Determinization and Ambiguity of Classical and Probabilistic Büchi Automata

Anton Pirogov

18.02.2021 PhD defense talk

German Research Foundation

 $\begin{array}{l} \Box((call \lor \Diamond open) \to ((\neg atfloor \lor \neg open) \mathcal{U} \\ (open \lor ((atfloor \land \neg open) \mathcal{U} \\ (open \lor ((\neg atfloor \land \neg open) \mathcal{U} \\ (open \lor ((\neg atfloor \land \neg open) \mathcal{U} \\ (open \lor ((\neg atfloor \mathcal{U} open))))))))) \end{array}$

have connections to logic

have connections to logic, model checking

2 // Quellcodebeispiel in C++ 4 #include <cstdlib> 5 #include <iostream> $\Box((call \lor \Diamond open) \to ((\neg at floor \lor \neg open) \mathcal{U}$ 7 using namespace std; $(open \lor ((at floor \land \neg open) \mathcal{U})$ 9 int main(int argc, char *argv[]) synthesize $(open \lor ((\neg at floor \land \neg open) \mathcal{U})$ 10 (11 int alter; // Variable vom Tvp Integer $(open \lor ((at floor \land \neg open) \mathcal{U})$ 12 cout << "Wie alt bist du?"; 14 cin >> alter; 15 cout << "Du bist " << alter << " Jahre alt" << endl; 16 getc(); 17 return 0; 18 1

have connections to logic, model checking, synthesis, ...

19

In this talk

Determinization of nondeterministic Büchi automata

Subclasses of probabilistic Büchi automata

Büchi automata are ω -automata, i.e. **finite** automata that read **infinite** words

Büchi automata are ω -automata, i.e. **finite** automata that read **infinite** words

- ► $\mathcal{A} = (\Sigma, Q, \Delta, q_0, F) \leftarrow$ just NFA with different semantics
- **Büchi**: some $q \in F$ seen *infinitely often* along a run
- **Co-Büchi**: all $q \in F$ seen *finitely often* along a run

Büchi automata are ω -automata, i.e. **finite** automata that read **infinite** words

As NFA:
$$L(\mathcal{A}) = (a+b)^*b$$

As NBA: $L(\mathcal{A}) = (a+b)^*b^\omega$

- $\mathcal{A} = (\Sigma, Q, \Delta, q_0, F) \leftarrow \text{just NFA with different semantics}$
- **Büchi**: some $q \in F$ seen *infinitely often* along a run

ŀ

Co-Büchi: all $q \in F$ seen *finitely often* along a run

Büchi automata are ω -automata, i.e. **finite** automata that read **infinite** words

As NFA: $L(\mathcal{A}) = (a+b)^*b$ As NBA: $L(\mathcal{A}) = (a+b)^*b^{\omega}$

• $\mathcal{A} = (\Sigma, Q, \Delta, q_0, F) \leftarrow \text{just NFA with different semantics}$

- **Büchi**: some $q \in F$ seen *infinitely often* along a run
- **Co-Büchi**: all $q \in F$ seen *finitely often* along a run

Some **SCC** of \mathcal{A} can be:

Büchi automata are ω -automata, i.e. **finite** automata that read **infinite** words

As NFA: $L(\mathcal{A}) = (a+b)^*b$ As NBA: $L(\mathcal{A}) = (a+b)^*b^{\omega}$

- **Büchi**: some $q \in F$ seen *infinitely often* along a run
- **Co-Büchi**: all $q \in F$ seen *finitely often* along a run
- Some SCC of A can be: acc.

Büchi automata are ω -automata, i.e. **finite** automata that read **infinite** words

As NFA: $L(\mathcal{A}) = (a+b)^*b$ As NBA: $L(\mathcal{A}) = (a+b)^*b^{\omega}$

- **Büchi**: some $q \in F$ seen *infinitely often* along a run
- **Co-Büchi**: all $q \in F$ seen *finitely often* along a run
- Some SCC of A can be: acc. rej.

Büchi automata are ω -automata, i.e. **finite** automata that read **infinite** words

As NFA: $L(\mathcal{A}) = (a+b)^*b$ As NBA: $L(\mathcal{A}) = (a+b)^*b^{\omega}$

- **Büchi**: some $q \in F$ seen *infinitely often* along a run
- **Co-Büchi**: all $q \in F$ seen *finitely often* along a run
- Some SCC of A can be: acc. rej. det. ...

Büchi automata are ω -automata, i.e. **finite** automata that read **infinite** words

- **Büchi**: some $q \in F$ seen *infinitely often* along a run
- **Co-Büchi**: all $q \in F$ seen *finitely often* along a run
- Some SCC of A can be: acc. rej. det. ...
- An automaton is weak, if all SCCs are acc. or rej.

In this talk

Introduction

NBA Determinization

Safra Construction Muller-Schupp Construction Comparison of Safra and Muller-Schupp A Sketch of the Unified Construction Optimizations and Heuristics

Characterization of PBA subclasses

Ambiguity of NBA Probabilistic Büchi Automata Weak PBA Ambiguity-restricted PBA Complexity results

Summary

► Classical synthesis: LTL $\xrightarrow{trans.}$ NBA $\xrightarrow{\dots}$ parity game \xrightarrow{solve} FSM

Classical synthesis:

LTL
$$\xrightarrow{\text{trans.}}$$
 NBA $\xrightarrow{\dots}$ parity game $\xrightarrow{\text{solve}}$ FSM

- ▶ *probabilistic* model checking: e.g. S is Markov chain. A possible question: Is $P(S \models \varphi) = 1$?
- ▶ NBA <u>unsuitable</u>: nondeterminism \rightarrow \checkmark ← probabilities

Classical synthesis:

LTL
$$\xrightarrow{\text{trans.}}$$
 NBA $\xrightarrow{\dots}$ parity game $\xrightarrow{\text{solve}}$ FSM

- ▶ *probabilistic* model checking: e.g. S is Markov chain. A possible question: Is $P(S \models \varphi) = 1$?
- ▶ NBA <u>unsuitable</u>: nondeterminism \rightarrow \checkmark ← probabilities
- classical solution: determinize the NBA

Classical synthesis:

LTL
$$\xrightarrow{\text{trans.}}$$
 NBA $\xrightarrow{\dots}$ parity game $\xrightarrow{\text{solve}}$ FSM

- ▶ *probabilistic* model checking: e.g. S is Markov chain. A possible question: Is $P(S \models \varphi) = 1$?
- ▶ NBA <u>unsuitable</u>: nondeterminism $\rightarrow \not\leftarrow$ probabilities
- classical solution:

determinize the NBA to DBA. impossible in general!

Classical synthesis:

LTL
$$\xrightarrow{\text{trans.}}$$
 NBA $\xrightarrow{\dots}$ parity game $\xrightarrow{\text{solve}}$ FSM

- ▶ *probabilistic* model checking: e.g. S is Markov chain. A possible question: Is $P(S \models \varphi) = 1$?
- ▶ NBA <u>unsuitable</u>: nondeterminism \rightarrow \checkmark ← probabilities
- classical solution:

determinize the NBA to DBA. impossible in general! a suitable deterministic

(Muller Streett) Rabin $\stackrel{is a}{\leftarrow}$ **Parity** automaton.

Example DPA: "finitely often *b* unless infinitely often *c*"

Parity acceptance: $w \in L(\mathcal{A}) \Leftrightarrow min.$ priority seen *inf.* often along run is *even*

A brief history of NBA determinization

powerset construction is not enough for NBA!

McNaughton 1966: $2^{2^{\mathcal{O}(n)}}$

A brief history of NBA determinization

Safra-Piterman construction (quick sketch)

Idea:

- Organize reachable states in a tree (= new states)
- Tree nodes have an "age rank" (introduction order)
- Derive acceptance from green and red node events

Idea:

- Organize reachable states in a tree (= new states)
- Tree nodes have an "age rank" (introduction order)
- Derive acceptance from green and red node events

Idea:

- Organize reachable states in a tree (= new states)
- Tree nodes have an "age rank" (introduction order)
- Derive acceptance from green and red node events

Accept, iff \exists node rank that is infinitely often green and finitely often red

$$w = (ab)^{\omega}$$

Split-tree:

- each NBA run can be traced
- each acc. run is "left-path"

$$w = (ab)^{\omega}$$

Split-tree:

Reduced Split-tree:

- each NBA run can be traced
- each acc. run is "left-path"

- each NBA run can be traced
- each acc. run is "left-path"

 $w = (ab)^{\omega}$

Reduced Split-tree:

- fin. many different levels
- one can show [KW08]:
 NBA accepts iff the reduced split-tree has left-path

$$w = (ab)^{\omega}$$

Reduced Split-tree:

- fin. many different levels
- one can show [KW08]: NBA accepts iff the reduced split-tree has left-path

Muller-Schupp:

- add ranked identity tokens
- Tokens move across tree levels
- Accept iff a token has <u>fin.</u> many red and <u>inf.</u> green events

Comparison of Safra and Muller-Schupp

$$w = abcac^{\omega}$$

ranked Safra trees on w:

Comparison of Safra and Muller-Schupp

ranked Safra trees on w:

$w = abcac^{\omega}$

Muller-Schupp tuples on *w*:

Key observation:

ranked Safra trees $\stackrel{1-to-1}{\longleftrightarrow}$ ranked Muller-Schupp tuples

ranked Safra trees on w:

Muller-Schupp tuples on *w*:

Comparison of Safra and Muller-Schupp

Key observation: ranked Safra trees $\stackrel{1-to-1}{\longleftrightarrow}$ ranked Muller-Schupp tuples

Only difference between the constructions: handling of nodes with green events

Our unified algorithm

- Formulated on ranked tuples (like Muller-Schupp)
- Transition defined using four simple operations: step, prune, merge, normalize

Our unified algorithm

- Formulated on ranked tuples (like Muller-Schupp)
- Transition defined using four simple operations: step, prune, merge, normalize
- merge is optional and also non-deterministic: "when a rank is red or green, merge sets as you like, while satisfying [technical condition]"

Our unified algorithm

- Formulated on ranked tuples (like Muller-Schupp)
- Transition defined using four simple operations: step, prune, merge, normalize
- merge is optional and also non-deterministic: "when a rank is red or green, merge sets as you like, while satisfying [technical condition]"
- Different instantiations of this merge rule yield:
 - Muller-Schupp-style construction (= no merge)
 - Safra-style construction
 - A new "maximal merge" rule
 - ... and other possibilities

$$(\alpha, t) = ($$
 $S_1^{\alpha(1)}$ $S_2^{\alpha(2)}$ $S_3^{\alpha(3)}$ \cdots $S_n^{\alpha(n)}$ $)$

$$\begin{array}{c} (\alpha,t) = \begin{pmatrix} S_1^{\alpha(1)} & S_2^{\alpha(2)} & S_3^{\alpha(3)} & \cdots & S_n^{\alpha(n)} \end{pmatrix} \\ \downarrow & step & \Delta_t(\tilde{s}_{1,x}) & \Delta_t(\tilde{s}_{2,x}) & \Delta_t(\tilde{s}_{3,x}) & \Delta_t(\tilde{s}_{3,x}) \\ (\hat{\alpha},\hat{t}) = \begin{pmatrix} \hat{s}_1^{n+1} & \hat{s}_2^{\alpha(1)} & \hat{s}_3^{n+1} & \hat{s}_4^{\alpha(2)} & \hat{s}_5^{n+1} & \hat{s}_6^{\alpha(3)} & \cdots & \hat{s}_{2n-1}^{n+1} & \hat{s}_{2n}^{\alpha(n)} \end{pmatrix}$$

(determine active (green + red) ranks and smallest active rank *k*)

(determine active (green + red) ranks and smallest active rank *k*)

$$(\tilde{\alpha}, \tilde{t}) = (\begin{array}{ccc} I_1 = \{1,2\} \\ \widetilde{S}_1 > k \\ \widetilde{S}_2 > k \end{array} \begin{array}{c} I_2 = \{3\} \\ \widetilde{S}_3 < k \\ \widetilde{S}_3 < k \end{array} \begin{array}{c} I_3 = \{4,5,6\} \\ \widetilde{S}_4 > k \\ \widetilde{S}_5 > k \\ \widetilde{S}_5 > k \\ \widetilde{S}_5 > k \\ \widetilde{S}_6 \\ k \end{array} \begin{array}{c} I_4 = \{7\} \\ \widetilde{S}_7 > k \\ \widetilde{S}_8 < k \end{array}$$

(determine active (green + red) ranks and smallest active rank k)

 $\stackrel{\text{normalize}}{\longrightarrow} (\alpha', t')$

13 (6)

The flexibility of the merge operation

The flexibility of the merge operation

depending on performed merge we get different successors:

The flexibility of the merge operation

depending on performed merge we get different successors:

In this talk

Introduction

NBA Determinization

Safra Construction Muller-Schupp Construction Comparison of Safra and Muller-Schupp A Sketch of the Unified Construction Optimizations and Heuristics

Characterization of PBA subclasses

Ambiguity of NBA Probabilistic Büchi Automata Weak PBA Ambiguity-restricted PBA Complexity results

Summary

Optimization using preprocessing:

Use known *language inclusions* between NBA states (e.g. from simulation techniques) to simplify DPA states. **Example:** (assuming $L(q) \supseteq L(p)$)

$$(\{\mathbf{q},r\}^2,\{s\}^3,\{\mathbf{p},t\}^1) \xrightarrow{opt.} (\{\mathbf{q},r\}^2,\{s\}^3,\{t\}^1)$$

Optimization using preprocessing:

Use known *language inclusions* between NBA states (e.g. from simulation techniques) to simplify DPA states. **Example:** (assuming $L(q) \supseteq L(p)$)

$$(\{\mathbf{q},r\}^2,\{s\}^3,\{\mathbf{p},t\}^1) \stackrel{opt.}{\rightsquigarrow} (\{\mathbf{q},r\}^2,\{s\}^3,\{t\}^1)$$

Postprocessing optimization:

first minimize priorities (\Rightarrow hope for more equiv. traces) then "minimize" DPA like Moore automaton, **Example**:

Other optimizations (ATVA 2019)

Use modularized determinization construction:

- use sep. tuples for each NBA SCC, run them in parallel
- used for heuristics targeting acc./rej./det. SCCs of NBA

DPA state of original version:

$$\begin{pmatrix} S_1^{\alpha(1)}, S_2^{\alpha(2)}, \dots, S_n^{\alpha(n)} \\ \\ \underbrace{(\{q_1, q_3\}^5, \{q_2\}^3)}_{tracked \ SCC \ 1} \mid \underbrace{(\{q_4\}^1, \{q_6\}^6, \{q_5\}^4)}_{tracked \ SCC \ 2} \mid \underbrace{(\{q_7, q_8, q_9\}^2)}_{tracked \ SCC \ 3} \mid \underbrace{\{q_{10}\}}_{buffer}$$

Other optimizations (ATVA 2019)

Use modularized determinization construction:

- use sep. tuples for each NBA SCC, run them in parallel
- used for heuristics targeting acc./rej./det. SCCs of NBA

DPA state of original version:

$$\begin{pmatrix}
S_1^{\alpha(1)}, S_2^{\alpha(2)}, \dots, S_n^{\alpha(n)} \\
DPA \text{ state of modularized version:} \\
\underbrace{\left\{q_1, q_3\right\}^5, \{q_2\}^3}_{tracked \ SCC \ 1} \mid \underbrace{\left\{q_4\right\}^1, \{q_6\}^6, \{q_5\}^4}_{tracked \ SCC \ 2} \mid \underbrace{\left\{q_{77}, q_8, q_9\right\}^2}_{tracked \ SCC \ 3} \mid \underbrace{\left\{q_{10}\right\}}_{buffer}$$

Use degrees of freedom of the construction:

- manage existing states of DPA in a trie for quick lookup
- on each transition, try to reuse suitable existing states

Use modularized determinization construction:

- use sep. tuples for each NBA SCC, run them in parallel
- used for heuristics targeting acc./rej./det. SCCs of NBA

DPA state of original version:

$$\begin{pmatrix}
S_1^{\alpha(1)}, S_2^{\alpha(2)}, \dots, S_n^{\alpha(n)} \\
DPA \text{ state of modularized version:} \\
\underbrace{\left(\{q_1, q_3\}^5, \{q_2\}^3\right)}_{tracked \ SCC \ 1} \mid \underbrace{\left(\{q_4\}^1, \{q_6\}^6, \{q_5\}^4\right)}_{tracked \ SCC \ 2} \mid \underbrace{\left(\{q_7, q_8, q_9\}^2\right)}_{tracked \ SCC \ 3} \mid \underbrace{\{q_{10}\}}_{buffer}$$

Use degrees of freedom of the construction:

- manage existing states of DPA in a trie for quick lookup
- on each transition, try to reuse suitable existing states

Use information in naive "powerset automaton" (PSA):

- determinize each SCC of PSA separately
- per PSA SCC, keep one bottom SCC of partial DPA

In this talk

Introduction

NBA Determinization

Safra Construction Muller-Schupp Construction Comparison of Safra and Muller-Schupp A Sketch of the Unified Construction Optimizations and Heuristics

Characterization of PBA subclasses

Ambiguity of NBA Probabilistic Büchi Automata Weak PBA Ambiguity-restricted PBA Complexity results

Summary

Brief detour: Patterns characterizing NBA ambiguity (DLT 2018)

- Ambiguity on word w: # of different accepting runs on w
- Ambiguity class of A: amb. upper bound on any word

Brief detour: Patterns characterizing NBA ambiguity (DLT 2018)

- Ambiguity on word w: # of different accepting runs on w
- Ambiguity class of A: amb. upper bound on any word

for some $v \in \Sigma^*$ implies at least

Consider probabilistic instead of nondeterministic choice:

replace Q₀ with initial distribution μ₀ : Q → [0, 1]
 replace Δ with probabilistic distributions δ(q, x) i.e. Σ_{q'∈Q} δ(q, x, q') = 1 for all q ∈ Q, x ∈ Σ

Consider probabilistic instead of nondeterministic choice:

- ▶ replace Q_0 with initial distribution $\mu_0 : Q \rightarrow [0, 1]$
- ► replace Δ with probabilistic distributions $\delta(q, x)$ i.e. $\sum_{q' \in Q} \delta(q, x, q') = 1$ for all $q \in Q, x \in \Sigma$
- choose some semantics to define languages:
 - almost sure acceptance $L^{=1}(\mathcal{A})$
 - positive acceptance $L^{>0}(\mathcal{A})$
 - threshold acceptance $L^{>\lambda}(\mathcal{A}), \lambda \in \mathbb{R}$
- $egin{aligned} & L^{=1}(\mathcal{A}) \ & L^{>0}(\mathcal{A}) \ & L^{>\lambda}(\mathcal{A}), \lambda \in \mathbb{R} \end{aligned}$

Some properties of PBA [Baier et al., Chadha et al.]

Unlike PFA, which are still regular under > 0 and = 1 semantics, the following holds for PBA:

$$\mathbb{L}(DBA) \subset \mathbb{L}^{=1}(PBA)$$

$$\cap \qquad \cap$$

regular
$$\mathbb{L}(NBA) \subset \mathbb{L}^{>0}(PBA) \quad \text{non-regular}$$

$$= \omega \text{-Reg} \qquad \cap$$

$$\mathbb{L}^{>\lambda}(PBA)$$

Some properties of PBA [Baier et al., Chadha et al.]

Unlike PFA, which are still regular under > 0 and = 1 semantics, the following holds for PBA:

regular
$$\begin{array}{c} \mathbb{L}(DBA) \subset \mathbb{L}^{=1}(PBA) \\ \cap & \cap \\ \mathbb{L}(NBA) \subset \mathbb{L}^{>0}(PBA) \\ = \omega \operatorname{-Reg} & \cap \\ \mathbb{L}^{>\lambda}(PBA) \end{array}$$
 non-regular

Furthermore,

- checking $L^{=1}(\mathcal{A}) = \emptyset$ or $L^{=1}(\mathcal{A}) = \Sigma^{\omega}$ is PSPACE complete,
- checking $L^{>0}(\mathcal{A}) = \emptyset$ or $L^{>0}(\mathcal{A}) = \Sigma^{\omega}$ is undecidable.
- Goal: find more "tame" subclasses with good properties

We characterized the expressivity of weak PBA:

Theorem (FOSSACS 2020)

•
$$\mathbb{L}^{>0}(\mathsf{PWA}) = \mathbb{L}^{>0}(\mathsf{PCA})$$
 and $\mathbb{L}^{=1}(\mathsf{PWA}) = \mathbb{L}^{=1}(\mathsf{PBA})$

We characterized the expressivity of weak PBA:

Theorem (FOSSACS 2020)

▶
$$\mathbb{L}^{>0}(\mathsf{PWA}) = \mathbb{L}^{>0}(\mathsf{PCA})$$
 and $\mathbb{L}^{=1}(\mathsf{PWA}) = \mathbb{L}^{=1}(\mathsf{PBA})$

► $\mathbb{L}^{>0}(\mathsf{PWA}) \cap \mathbb{L}^{=1}(\mathsf{PWA}) = \mathbb{L}(\mathsf{DWA}) = \mathbb{L}(\mathsf{PWA}^{0/1})$

We characterized the expressivity of weak PBA:

Theorem (FOSSACS 2020)

•
$$\mathbb{L}^{>0}(\mathsf{PWA}) = \mathbb{L}^{>0}(\mathsf{PCA})$$
 and $\mathbb{L}^{=1}(\mathsf{PWA}) = \mathbb{L}^{=1}(\mathsf{PBA})$

►
$$\mathbb{L}^{>0}(\mathsf{PWA}) \cap \mathbb{L}^{=1}(\mathsf{PWA}) = \mathbb{L}(\mathsf{DWA}) = \mathbb{L}(\mathsf{PWA}^{0/1})$$

 $\blacktriangleright \ \mathbb{L}^{>0}(\mathsf{PWA}) \subset \mathbb{L}^{>\lambda}(\mathsf{PWA}) \subset \mathbb{L}^{>\lambda}(\mathsf{PBA})$

Making PBA behave well: Syntactically Restricted PBA

Two PBA restrictions identified in [Chadha et al. '09/'11]:

- Hierarchical PBA have the following property:
- ► There exists a function $|v| : Q \to \mathbb{N}$ s.t. $\forall q \in Q, a \in \Sigma$
 - no transition leads to a state q' with lower level
 - there is at most one trans. to some q' with the same level

Making PBA behave well: Syntactically Restricted PBA

Two PBA restrictions identified in [Chadha et al. '09/'11]:

- Hierarchical PBA have the following property:
- ► There exists a function $|v| : Q \to \mathbb{N}$ s.t. $\forall q \in Q, a \in \Sigma$
 - no transition leads to a state q' with lower level
 - there is *at most one* trans. to some q' with the same level

Making PBA behave well: Syntactically Restricted PBA

Two PBA restrictions identified in [Chadha et al. '09/'11]:

- Hierarchical PBA have the following property:
- ► There exists a function $|v| : Q \to \mathbb{N}$ s.t. $\forall q \in Q, a \in \Sigma$
 - no transition leads to a state q' with lower level
 - there is *at most one* trans. to some q' with the same level

► $\mathbb{L}^{>0}(HPBA) = \mathbb{L}(NBA), \quad \mathbb{L}^{=1}(HPBA) = \mathbb{L}(DBA)$

Simple PBA = 2-level HPBA with all acc. states on level 0
 L^{>0}(SPBA) = L⁼¹(SPBA) = L^{>λ}(SPBA) = L(DBA)

SPBA, HPBA and Ambiguity

By simple observations wrt. ambiguity patterns we have:

It seems *natural* to also check the expressivity of PBA without certain ambiguity patterns!

Ambiguity-restricted PBA and ω -regularity

full classification of the syntactic amb. classes wrt. regularity under > 0/= 1/> λ semantics, generalizing SPBA/HPBA:

Theorem (FOSSACS 2020)

▶ $\mathbb{L}^{>0}(fin. amb. PBA) = \mathbb{L}^{>0}(\aleph_0 \text{-}amb. PBA) = \mathbb{L}(\mathsf{NBA})$

Ambiguity-restricted PBA and ω -regularity

full classification of the syntactic amb. classes wrt. regularity under > 0/= 1/> λ semantics, generalizing SPBA/HPBA:

Theorem (FOSSACS 2020)

Ambiguity-restricted PBA and ω -regularity

full classification of the syntactic amb. classes wrt. regularity under > 0/= 1/> λ semantics, generalizing SPBA/HPBA:

Theorem (FOSSACS 2020)

▶ $\mathbb{L}^{>0}(fin. amb. PBA) = \mathbb{L}^{>0}(\aleph_0 \text{-}amb. PBA) = \mathbb{L}(\mathsf{NBA})$

►
$$\mathbb{L}^{=1}$$
(\leq *exp. amb.* PBA) = $\mathbb{L}^{=1}$ (*flat* PBA) = \mathbb{L} (DBA)
 $\subset \mathbb{L}^{=1}$ (\aleph_0 *-amb.* PBA)

• $\mathbb{L}^{>\lambda}(fin. amb. PBA) = \mathbb{L}(NBA) \subset \mathbb{L}^{>\lambda}(poly. amb. PBA)$
Summary of results on ambiguity-restricted PBA (FOSSACS 2020)

РВА Туре	ω -regular?			Emptiness		Universality	
	>0	= 1	$>\lambda$	> 0	= 1	> 0	= 1
fin. amb.							
pol. amb.				$\in NL$	$\in PSPACE$	$\in PSPACE$	$\in NL$
exp. amb.							
flat				\in NL c.	\in PSPACE c.	\in PSPACE c.	\in NL c.
\aleph_0 amb.							$\in PSPACE$

Summary of results on ambiguity-restricted PBA (FOSSACS 2020)

РВА Туре	ω -regular?			En	nptiness	Universality	
	>0	= 1	$>\lambda$	> 0	= 1	> 0	= 1
fin. amb.							
pol. amb.				$\in NL$	$\in PSPACE$	$\in PSPACE$	$\in NL$
exp. amb.							
flat				\in NL c.	$\in PSPACE c.$	$\in PSPACE c.$	\in NL c.
\aleph_0 amb.							$\in PSPACE$

 In contrast to the classical setting, restricting ambiguity influences the expressivity

Summary of results on ambiguity-restricted PBA (FOSSACS 2020)

РВА Туре	ω -regular?			Emptiness		Universality	
	>0	= 1	$>\lambda$	> 0	= 1	> 0	= 1
fin. amb.							
pol. amb.				$\in NL$	$\in PSPACE$	$\in PSPACE$	$\in NL$
exp. amb.							
flat				\in NL c.	$\in PSPACE c.$	$\in PSPACE c.$	\in NL c.
\aleph_0 amb.							$\in PSPACE$

- In contrast to the classical setting, restricting ambiguity influences the expressivity
- The identified ambiguity-restricted PBA classes
 - subsume Hierarchical and Simple PBA
 - have similar complexity results

In joint work with Christof Löding, we obtained the following main results, presented in the PhD thesis:

 a new unified determinization construction for NBA (ICALP 2019)

 multiple new optimizations that are based on it (ATVA 2019)

 a full characterization of ambiguity in Büchi automata (DLT 2018)

 new regular subclasses of probabilistic Büchi automata (FOSSACS 2020)