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Background and Related Work

I Freeze LTL: LTL with freeze and check operator

I Allows to store values in registers and compare with other values

I Checked over data words

I [Demri et al., 2005]: Not decidable in general!

I More than one register or past-time operators yield undecidability

I [Demri and Lazic, 2009]: Forward fragment with one register (LTL↓
1 )

decidable

A data word:

{p, q} {p} {p} ∅ {q} . . .

9 5 4 11 6 . . .
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Background and Related Work

[Figueira, 2012]:

I Investigation of Alternating Register Automata (ARA)

I Introduction of ∃≥ and ∀≤ operators

I New, simpler proof for decidability of emptiness of ARA

I Uses proof technique based on well-structured transition systems

[Finkel and Schnoebelen, 2001]

I ⇒ Shows decidability of LTL↓
1 with ∃≥ and ∀≤ via ARA

[Decker and Thoma, 2015]:

I Define new logic LTL↓
A based on LTL↓

1

I Allows to store multiple values in each position and remains decidable!

I Requirement: tree-quasi-ordered attribute set and restricted comparison
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Contribution of the thesis

I Take LTL↓
A[X,U] from [Decker and Thoma, 2015]

I Add quantifiers ∃≥ and ∀x
≤ from [Figueira, 2012]

I Call resulting logic LTL↓
A[X,U, ∃≥, ∀x

≤]

I Adapt alternative proofs by Decker and Thoma from LTL↓
A[X,U] to

LTL↓
A[X,U,∃≥, ∀x

≤] to show decidability
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Tree-quasi-orderings

I (A,4) quasi-ordering + each downward-closure (path) total

⇒ Tree-quasi-ordering

I All downward-closures linear ⇒ Tree ordering

I min. elements = roots, max. elements = leaves

x1
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x4

x5

x6 x7

x8
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b
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e f g

i

j

k l

Anton Pirogov Extending Freeze-LTL on Multi-Attributed Data Words with Quantifiers 6/28



Data words

I w = (a1,d1)(a2,d2) · · · (an,dn) ∈ (Σ×∆A)+ is A-attributed data word

I consisting of tuples of letters ai ∈ Σ and data valuations di ∈ ∆A

I map each attribute to some data value.

I If A ≈ [k], valuations may be called vectors

{a} {b} {a} {c} {b}

x1 7→ 5

x2 7→ 3

x1 7→ 5

x2 7→ 3

x1 7→ 8

x2 7→ 3

x1 7→ 8

x2 7→ 2

x1 7→ 5

x2 7→ 2
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Syntax

Let A be fin. set of attributes, AP fin. set of atomic propositions.

Syntactically valid formulae in LTL↓
A[X,U, ∃≥, ∀x

≤] are described by

ϕ ::= p | ¬ψ | ϕ ∧ ϕ | ϕ ∨ ϕ

| Xϕ | ϕUϕ | ↓x ϕ | ↑x

| ∃≥ϕ | ∀x
≤,ψϕ

ψ ::= p | ¬ψ | ψ ∧ ψ | ψ ∨ ψ

| Xψ | ψUψ | ↓x ψ | ↑x

where p ∈ AP and x ∈ A. Parentheses may be used freely.

Anton Pirogov Extending Freeze-LTL on Multi-Attributed Data Words with Quantifiers 8/28



More syntax

Some syntactic sugar for convenience:

true := p ∨ ¬p p ∈ AP false := ¬ true

ϕ⇒ ψ := ¬ϕ ∨ ψ ϕ⇔ ψ := (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

Fϕ := true Uϕ Gϕ := ¬F¬ϕ

Xϕ := ¬X¬ϕ ϕ Rψ := ¬(¬ϕU¬ψ)
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Example of freeze and check

a b

x1 7→ 5

x2 7→ 8

x4 7→ 6

x3 7→ 4

x1 7→ 5

x2 7→ 1

x4 7→ 5

x3 7→ 8
ϕ1 = a∧ ↓x4 X(b∧ ↑x3)

a b

x1 7→ 5

x2 7→ 8

x4 7→ 6

x3 7→ 4

x1 7→ 5

x2 7→ 1

x4 7→ 5

x3 7→ 8
ϕ2 =↓x4 X ↑x2

Anton Pirogov Extending Freeze-LTL on Multi-Attributed Data Words with Quantifiers 10/28



Example of ∀x
≤,ψ operator

1 2 3 4 5 6

c a c a c b

x1
5

x2
8

x4
6

x3
4

x1
5

x2
1

x4
5

x3
4

x1
5

x2
4

x4
5

x3
4

x1
5

x2
4

x4
9

x3
4

x1
3

x2
7

x4
3

x3
3

x1
5

x2
4

x4
3

x3
3

ϕ = F(b ∧ ∀x3
≤,a ↑

x2)
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Example of ∃≥ operator

b a b a a b a a

1

2

3

1

2

3

3

2

1

1

2

3

3

2

1

2

3

1

2

3

1

1

3

2

ϕ = ∃≥((b ⇒ ¬ ↑3)U(a∧ ↑3))
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NRA execution example

A = ({a, b}, 3, {q1, . . . , q8}, q1, δ)

qi 1 2 3 4 5 6 7 8

δ(qi) q2 ∧ q3 a .q4 store(q5) .q6 q7 ∧ q8 b eq2

w =

a a b

4

5

7

5

1

2

5

1

9

⇒ C1 = (1, ., (a, (4, 5, 7)), {((4, 5, 7), q1)})

A obviously corresponds to formula ϕ = a ∧ X ↓2 X(b ∧ ↑2)!
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WQO and Transition Systems

Well-quasi-ordering: Let (M,4) be a quasi-ordering.

(M,4) is called well-quasi-ordering, if every infinite sequence of elements

m1m2m3 · · · from M contains two elements mi,mj, so that mi 4 mj and i < j.

Transition systems:

I (S,→) is transition system with set of states and trans. relation

I Succ(s) denotes the set of direct successors of state s ∈ S

I If Succ(s) is finite for all s ∈ S ⇒ finitely branching.

I If Succ(s) is computable for all s ∈ S ⇒ effective.
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Reflexive Downward Compatibility

A transition system with a wqo relation ≤⊂ S × S is called reflexive downward

compatible wrt. ≤, if and only if for all a1, a2, a′1 ∈ S with a1 → a2 and a′1 ≤ a1

there exists a′2 with a′2 ≤ a2 and either a′1 → a′2 or a′1 = a′2.

∀a1, a′1, a2 ∃a′2 :

a1 → a2

≥ ≥
a′1 → a′

2

or

a1 → a2

≥ ≥

a′1 = a′
2
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Decidability of NRA emptiness – proof sketch

I Show that configurations of NRA give rise to a wqo:

I Successively construct wqo relations on (parts) of configurations
I Apply corresponding results where appropriate

I View transition relation of NRA configurations as transition system

I Show that NRA transition relation is rdc wrt. the configuration wqo
I ⇒ effective, finitely branching downward-WSTS with refl. compatibility

I Apply result from [Finkel and Schnoebelen, 2001] showing that

reachability of accepting configurations is decidable
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Collapsing of the SCCs

Let A be a tree-quasi-ordered set of attributes. Every LTL↓
A formula ϕ can be

translated to an equisatisfiable LTL↓
A′ formula ϕ′, where A′ is a tree ordering.

x1

x2

x3 x4

x5

x6

x7

x8

x9 x10

collapse

x1

x3 x7

x9
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Frame encoding

Let A be a tree ordering, k = ht(A) be the depth of A and w ∈ (Σ×∆A)+ a

data word of length m. We can translate the A-attributed data word w to a

[k]-attributed data word w′.

b a c

x1 7→ 5

x2 7→ 2 x3 7→ 7

x4 7→ 6 x5 7→ 8

x1 7→ 7

x2 7→ 5 x3 7→ 6

x4 7→ 2 x5 7→ 4

x1 7→ 3

x2 7→ 2 x3 7→ 6

x4 7→ 8 x5 7→ 7

encode ⇒

b b b a a a c c c

5

2

1

5

7

6

5

7

8

7

5

9

7

6

2

7

6

4

3

2

5

3

6

8

3

6

7
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Linearisation - sketch

If A is a tree-quasi-ordered set of attributes of depth k, then every LTL↓
A

formula can be translated into an equisatisfiable LTL↓
[k] formula.

I Let Φ be an LTL↓
A formula

I Applying collapsing assume formula over tree-ordered attribute set

I Argue that each model over A attributes has a model over [k] attributes

(frame encoding)

I Assume formula in a normal form with ↓ only before ↑ or X (applying

some simple equivalences to “push” freeze operators to the right)

I Extend formula with additional terms to ensure that the frame encoding

is correct
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Linearisation - sketch

Translate formula recursively to get resulting formula Φ̂ = t(Φ) ∧ β1 ∧ β2 ∧ β2:

t(a) := a

t(¬ψ) := ¬t(ψ)

t(ψ ∧ ξ) := t(ψ) ∧ t(ξ)

t(Xψ) := ∧n
j=1pj ⇒ Xn−j+1t(ψ)

t(ψUξ) := (p1 ⇒ t(ψ))U(p1 ∧ t(ξ))

t(↓x ψ) := Xsb(x)−1 ↓ht(x) t(ψ)

t(↑x) := ∧n
j=1pj ⇒ Xsb(x)−j ↑ht(x)

t(∃≥ψ) := ∃≥t(ψ)

t(∀x
≤,ψξ) := ∀ht(x)

≤,ψ∧psb(x)
t(ξ)
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Translation to NRA - sketch

Every LTL↓
[k][X,U, ∃≥, ∀x

≤] formula ϕ can be translated into a corresponding

k-NRA Aϕ, so that for every non-empty data word w ∈ (Σ×∆[k])+:

w satisfies ϕ⇔ Aϕ accepts w

I take care of ∀x
≤,ψ: ϕ′ :=

∧
j ηj ∧ ϕ, ηj := G(ψj ⇒↓k G true )

I ⇒ carry along all data values pre-filtered by different ψi in formula

I convert φ′ to negative normal form (neg. only before propostions and ↑x)

I define a state for each subformula

I ⇒ each state represents outermost token of rest-formula to verify

I define corresponding transition function
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Decidability of LTL↓
A[X,U, ∃≥,∀x

≤]

LTL↓
A[X,U, ∃≥, ∀x

≤] is decidable if and only if A is a tree-quasi-ordering.

I (⇒) follows from [Decker and Thoma, 2015, Theorem 2]

(LTL↓
A[X,U, ∃≥, ∀x

≤] is superset!)

I (⇐) follows from

I linearisation
I translation
I decidability of NRA emptiness
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Conclusion

Example formula using ordered attributes (pid “depends” on res):

G(lock ⇒↓pid ((use ∧ ↑res⇒↑pid) ∧ ¬halt)U(unlock ∧ ↑pid))

. . . and now we can also express properties like:

∃≥F((lock ∧ ↑pid) ∧ ¬(use ∧ ↑res)U(unlock ∧ ↑pid))

“at some point a resource is locked, but not used”

G(lock ⇒ ∀pid
≤,lock(↑

res⇒↑pid))

“each resource is always locked by the same process”
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Open questions

I Lifting the logic to data trees

I Figuiera has also results for Alternating Tree Register Automata (ATRA)
I Add nesting to ATRA in same way?
I Maybe interesting in context of XPath query validation

I Extending the logic with a linear ordering over the data values

I Figuiera proved that linear ordering on data domain is decidable
I ⇒ Extend logic with operators like ↑x

<, ↑x
> ?

I Would allow better value inspection, e.g. G(↓var X ↑var
> ).

I Analyzing the complexity of the logic

I LTL↓
A[X,U] is not primitive-recursive

I Fε0 -complete in fast-growing complexity classes [Schmitz, 2013]
I Do ∃≥, ∀x

≤,ψ affect this?
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