

Extending Freeze-LTL on Multi-Attributed

Data Words with Quantifiers

Anton Pirogov

08.09.2015

Contents

Introduction

- Background and Related Work
- Contribution of the thesis

Definition of the logic

- Preliminaries
- Syntax and examples
- Nested Register Automata
 - Emptiness of NRA
- Decidability of the logic
 - Linearisation
 - Translation to NRA

Summary and Open Questions

IS

Background and Related Work

- Freeze LTL: LTL with freeze and check operator
- Allows to store values in *registers* and compare with other values
- Checked over data words
- ▶ [Demri et al., 2005]: Not decidable in general!
- More than one register or past-time operators yield undecidability
- ► [Demri and Lazic, 2009]: Forward fragment with one register (LTL[↓]₁) decidable

A data word:

 $\{p,q\}$ $\{p\}$ $\{p\}$ \emptyset $\{q\}$... 9 5 4 11 6 ...

Background and Related Work

[Figueira, 2012]:

- Investigation of Alternating Register Automata (ARA)
- \blacktriangleright Introduction of \exists_{\geq} and \forall_{\leq} operators
- New, simpler proof for decidability of emptiness of ARA
- Uses proof technique based on *well-structured transition systems* [Finkel and Schnoebelen, 2001]
- ▶ ⇒ Shows decidability of LTL_1^{\downarrow} with \exists_{\geq} and \forall_{\leq} via ARA

[Decker and Thoma, 2015]:

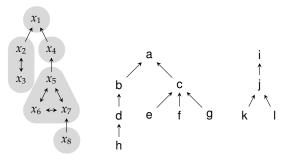
- Define new logic LTL_A^{\downarrow} based on LTL_1^{\downarrow}
- > Allows to store multiple values in each position and remains decidable!
- ► Requirement: tree-quasi-ordered attribute set and restricted comparison

Contribution of the thesis

- ► Take LTL[↓]_A[X, U] from [Decker and Thoma, 2015]
- ▶ Add quantifiers \exists_{\geq} and $\forall_{<}^{x}$ from [Figueira, 2012]
- Call resulting logic $LTL_A^{\downarrow}[\mathbf{X}, \mathbf{U}, \exists_{\geq}, \forall_{\leq}^x]$
- ► Adapt alternative proofs by Decker and Thoma from LTL[↓]_A[X, U] to LTL[↓]_A[X, U, ∃_≥, ∀^x_≤] to show decidability

Tree-quasi-orderings

- ► (A, \preccurlyeq) quasi-ordering + each downward-closure (*path*) total
 - ⇒ Tree-quasi-ordering
- ► All downward-closures linear ⇒ *Tree ordering*
- min. elements = roots, max. elements = leaves



Data words

- $w = (a_1, \mathbf{d}_1)(a_2, \mathbf{d}_2) \cdots (a_n, \mathbf{d}_n) \in (\Sigma \times \Delta^A)^+$ is A-attributed data word
- ▶ consisting of tuples of *letters* $a_i \in \Sigma$ and *data valuations* $\mathbf{d}_i \in \Delta^A$
- map each attribute to some data value.
- If $A \approx [k]$, valuations may be called *vectors*

{a}	{b}	{a}	{C}	{b}
$x_1 \mapsto 5$	$x_1 \mapsto 5$	$x_1 \mapsto 8$	$x_1 \mapsto 8$	$x_1 \mapsto 5$
$x_2 \mapsto 3$	$x_2 \mapsto 3$	$x_2 \mapsto 3$	$x_2 \mapsto 2$	$x_2 \mapsto 2$

isp

Syntax

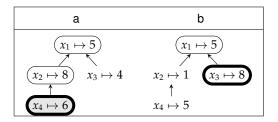
Let *A* be fin. set of attributes, *AP* fin. set of atomic propositions. Syntactically valid formulae in $LTL_A^{\downarrow}[\mathbf{X}, \mathbf{U}, \exists_{\geq}, \forall_{<}^x]$ are described by

where $p \in AP$ and $x \in A$. Parentheses may be used freely.

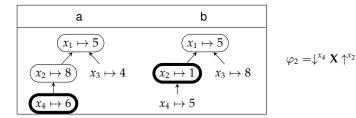
More syntax

Some syntactic sugar for convenience:

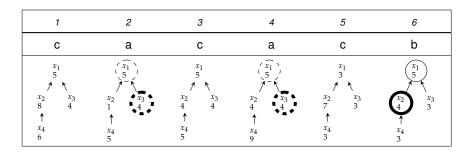
Example of freeze and check



$$\varphi_1 = a \wedge \downarrow^{x_4} \mathbf{X}(b \wedge \uparrow^{x_3})$$



Example of $\forall_{\leq,\psi}^x$ operator



 $\varphi = \mathbf{F}(b \wedge \forall_{\leq,a}^{x_3} \uparrow^{x_2})$

Example of \exists_{\geq} operator

b	а	b	а	а	b	а	a
1	1	3	1	3	2	2	1
	↑	↑	↑	↑	↑	↑	↑
2	2	2	2	2	3	3	3
	↑	↑	↑	↑	↑	↑	1
	3	1	3	1	1	1	2

 $\varphi = \exists_{\geq} ((b \Rightarrow \neg \uparrow^3) \mathbf{U}(a \land \uparrow^3))$

NRA execution example

	а	а	b
<i>w</i> =	4	5	5
	↑	↑	↑
	5	1	1
	↑	↑	↑
	7	2	9

 $\Rightarrow C_1 = (1, \triangleright, (a, (4, 5, 7)), \{((4, 5, 7), q_1)\})$

 \mathcal{A} obviously corresponds to formula $\varphi = a \wedge \mathbf{X} \downarrow^2 \mathbf{X}(b \wedge \uparrow^2)!$

WQO and Transition Systems

Well-quasi-ordering: Let (M, \preccurlyeq) be a quasi-ordering.

 (M, \preccurlyeq) is called *well-quasi-ordering*, if every infinite sequence of elements $m_1m_2m_3\cdots$ from M contains two elements m_i, m_j , so that $m_i \preccurlyeq m_j$ and i < j.

Transition systems:

- (S, \rightarrow) is *transition system* with set of states and trans. relation
- ▶ Succ(s) denotes the set of direct successors of state s ∈ S
- If Succ(s) is finite for all $s \in S \Rightarrow$ *finitely branching*.
- If Succ(s) is computable for all $s \in S \Rightarrow$ *effective*.

Reflexive Downward Compatibility

A transition system with a wqo relation $\leq \subset S \times S$ is called *reflexive downward compatible* wrt. \leq , if and only if for all $a_1, a_2, a'_1 \in S$ with $a_1 \rightarrow a_2$ and $a'_1 \leq a_1$ there exists a'_2 with $a'_2 \leq a_2$ and either $a'_1 \rightarrow a'_2$ or $a'_1 = a'_2$.

$$\forall a_1, a'_1, a_2 \quad \exists a'_2 :$$

$$a_1 \quad \rightarrow \quad a_2 \qquad a_1 \quad \rightarrow \quad a_2$$

$$\mid \lor \qquad \mid \lor \qquad \mathsf{Or} \quad \mid \lor \qquad \mid \lor$$

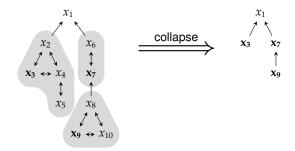
$$a'_1 \quad \rightarrow \quad \mathbf{a'_2} \qquad a'_1 \quad = \quad \mathbf{a'_2}$$

Decidability of NRA emptiness – proof sketch

- Show that configurations of NRA give rise to a wqo:
 - Successively construct wqo relations on (parts) of configurations
 - Apply corresponding results where appropriate
- View transition relation of NRA configurations as transition system
 - Show that NRA transition relation is rdc wrt. the configuration wqo
 - ► ⇒ effective, finitely branching *downward-WSTS with refl. compatibility*
- Apply result from [Finkel and Schnoebelen, 2001] showing that reachability of accepting configurations is decidable

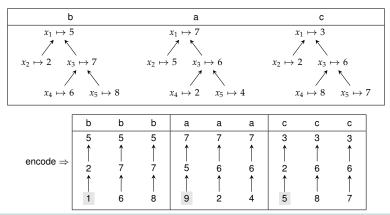
Collapsing of the SCCs

Let *A* be a tree-quasi-ordered set of attributes. Every LTL_A^{\downarrow} formula φ can be translated to an equisatisfiable $LTL_{A'}^{\downarrow}$ formula φ' , where *A'* is a tree ordering.



Frame encoding

Let *A* be a tree ordering, k = ht(A) be the depth of *A* and $w \in (\Sigma \times \Delta^A)^+$ a data word of length *m*. We can translate the A-attributed data word *w* to a [*k*]-attributed data word *w'*.



Extending Freeze-LTL on Multi-Attributed Data Words with Quantifiers

IS

Linearisation - sketch

- If *A* is a tree-quasi-ordered set of attributes of depth *k*, then every LTL_A^{\downarrow} formula can be translated into an equisatisfiable $LTL_{[k]}^{\downarrow}$ formula.
 - Let Φ be an LTL¹_A formula
 - Applying collapsing assume formula over tree-ordered attribute set
 - ► Argue that each model over *A* attributes has a model over [*k*] attributes (frame encoding)
 - Assume formula in a normal form with ↓ only before ↑ or X (applying some simple equivalences to "push" freeze operators to the right)
 - Extend formula with additional terms to ensure that the frame encoding is correct

Linearisation - sketch

Translate formula recursively to get resulting formula $\hat{\Phi} = t(\Phi) \land \beta_1 \land \beta_2 \land \beta_2$:

t(a) := a $t(\neg\psi) := \neg t(\psi)$ $t(\psi \wedge \xi) := t(\psi) \wedge t(\xi)$ $t(\mathbf{X}\psi) := \wedge_{i=1}^{n} p_i \Rightarrow \mathbf{X}^{n-j+1} t(\psi)$ $t(\psi \mathbf{U}\xi) := (p_1 \Rightarrow t(\psi))\mathbf{U}(p_1 \land t(\xi))$ $t(\downarrow^x \psi) := \mathbf{X}^{\mathsf{sb}(x)-1} \downarrow^{\mathsf{ht}(x)} t(\psi)$ $t(\uparrow^x) := \wedge_{i=1}^n p_i \Rightarrow \mathbf{X}^{\mathsf{sb}(x)-j} \uparrow^{\mathsf{ht}(x)}$ $t(\exists > \psi) := \exists > t(\psi)$ $t(\forall_{<,\psi}^{x}\xi) := \forall_{<,\psi\wedge p_{\mathsf{sh}(x)}}^{\mathsf{ht}(x)} t(\xi)$

Translation to NRA - sketch

Every $LTL^{\downarrow}_{[k]}[\mathbf{X}, \mathbf{U}, \exists_{\geq}, \forall_{\leq}^{x}]$ formula φ can be translated into a corresponding k-NRA \mathcal{A}_{φ} , so that for every non-empty data word $w \in (\Sigma \times \Delta^{[k]})^{+}$:

w satisfies $\varphi \Leftrightarrow \mathcal{A}_{\varphi}$ accepts w

- ► take care of $\forall_{\leq,\psi}^{x}$: $\varphi' := \bigwedge_{j} \eta_{j} \land \varphi$, $\eta_{j} := \mathbf{G}(\psi_{j} \Rightarrow \downarrow^{k} \mathbf{G} \text{ true })$
- ▶ \Rightarrow carry along all data values pre-filtered by different ψ_i in formula
- convert ϕ' to negative normal form (neg. only before propositions and \uparrow^x)
- define a state for each subformula
- \blacktriangleright \Rightarrow each state represents outermost token of rest-formula to verify
- define corresponding transition function

Decidability of $LTL^{\downarrow}_{A}[\mathbf{X}, \mathbf{U}, \exists_{\geq}, \forall_{\leq}^{x}]$

 $LTL^{\downarrow}_{A}[\mathbf{X}, \mathbf{U}, \exists_{\geq}, \forall_{\leq}^{x}]$ is decidable if and only if A is a tree-quasi-ordering.

- (⇒) follows from [Decker and Thoma, 2015, Theorem 2]
 (LTL[↓]_A[X, U, ∃_≥, ∀^x_<] is superset!)
- ► (⇐) follows from
 - linearisation
 - translation
 - decidability of NRA emptiness

Conclusion

Example formula using ordered attributes (pid "depends" on res):

$$\mathbf{G}(\mathsf{lock} \Rightarrow \downarrow^{\mathsf{pid}} ((\mathsf{use} \land \uparrow^{\mathsf{res}} \Rightarrow \uparrow^{\mathsf{pid}}) \land \neg \mathsf{halt}) \mathbf{U}(\mathsf{unlock} \land \uparrow^{\mathsf{pid}}))$$

... and now we can also express properties like:

$$\exists_{\geq} F((\mathsf{lock} \land \uparrow^{\mathsf{pid}}) \land \neg(\mathsf{use} \land \uparrow^{\mathsf{res}}) U(\mathsf{unlock} \land \uparrow^{\mathsf{pid}}))$$

"at some point a resource is locked, but not used"

$$G(\text{lock} \Rightarrow \forall^{\text{pid}}_{\leq,\text{lock}}(\uparrow^{\text{res}} \Rightarrow \uparrow^{\text{pid}}))$$

"each resource is always locked by the same process"

Open questions

- Lifting the logic to data trees
 - Figuiera has also results for Alternating Tree Register Automata (ATRA)
 - Add nesting to ATRA in same way?
 - Maybe interesting in context of XPath query validation
- Extending the logic with a linear ordering over the data values
 - Figuiera proved that linear ordering on data domain is decidable
 - ► ⇒ Extend logic with operators like $\uparrow^{x}_{<}, \uparrow^{x}_{>}$?
 - Would allow better value inspection, e.g. $G(\downarrow^{var} X \uparrow^{var}_{>})$.
- Analyzing the complexity of the logic
 - $LTL_A^{\downarrow}[\mathbf{X}, \mathbf{U}]$ is not primitive-recursive
 - ► F_{ε0}-complete in *fast-growing complexity classes* [Schmitz, 2013]
 - ▶ Do $\exists_{\geq}, \forall_{<,\psi}^x$ affect this?

۱S۱

References I

On freeze LTL with ordered attributes.

CoRR, abs/1504.06355.

LTL with the freeze quantifier and register automata.

ACM Transactions on Computational Logic, 10(3).

Demri, S., Lazic, R., and Nowak, D. (2005).

On the freeze quantifier in constraint LTL: decidability and complexity.

In 12th International Symposium on Temporal Representation and

Reasoning TIME 2005, 23-25 June 2005, Burlington, Vermont, USA,

pages 113-121. IEEE Computer Society.

References II

Figueira, D. (2012).

Alternating register automata on finite words and trees.

Logical Methods in Computer Science, 8(1):1–43.

Finkel, A. and Schnoebelen, P. (2001).

Well-structured transition systems everywhere!

Theoretical Computer Science, 256(1-2):63-92.

Schmitz, S. (2013).

Complexity hierarchies beyond elementary.

CoRR, abs/1312.5686.