
Extending Freeze-LTL on Multi-Attributed
Data Words with Quantifiers

Erweiterung von Freeze-LTL auf mehrfach

attributierten Datenwörtern um Quantoren

Bachelorarbeit

im Rahmen des Studiengangs

Informatik
der Universität zu Lübeck

vorgelegt von

Anton Pirogov

ausgegeben und betreut von

Prof. Dr. Martin Leucker

mit Unterstützung von

Normann Decker

Lübeck, den 15. Juli 2015

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe

Dritter und ohne die Benutzung anderer als der angegebenen Hilfsmittel selbständig

verfasst habe; die aus anderenQuellen direkt oder indirekt übernommenen Daten und

Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

(Anton Pirogov)

Lübeck, den 15. Juli 2015

iii

Abstract The family of temporal logics is useful to precisely specify the behaviour of

systems with relation to time. For example, that some events have to follow each other,

always or never happen, etc. They are often used in the context of software verification

to test programs for correct behaviour, because not all errors can be caught at compile

time or by unit tests. From corresponding logical formulae one can for example construct

efficient monitors that evaluate the execution of programs and can detect whether there

are deviations from the specification.

These logics differ in expressivity, depending on the allowed operators and quantifiers. So

the ambition is to construct logics that allow for expression of interesting properties while

keeping the verification or at least decidability feasible. The logic Freeze-LTL extends

LTL and allows for storing a value in a register and checking for equality at some later

point in time. The main contribution of this thesis is the definition of a new logic and

the proof that decidability is preserved. This logic combines two different extensions of

Freeze-LTL from the literature – on the one hand, the possibility to work with multiple

ordered attributes, if they exhibit a kind of hierarchial structure, on the other hand, the

possibility to quantify over previous values or guess some future value for which some

property must hold.

v

Kurzfassung Die Familie der linearen Temporallogiken eignet sich hervorragend dazu,

das Verhalten von Systemen in Abhängigkeit von Zeit präzise zu beschreiben bzw. spez-

ifizieren. Zum Beispiel, dass bestimmte Ereignisse aufeinander folgen müssen, immer

oder nie eintreten, etc. Sie werden oft im Kontext der Softwareverifikation verwendet,

um Programme auf korrektes Verhalten zu prüfen, da sich nicht alle Fehler bereits zur

Kompilierzeit oder durch statische Unit-Tests erkennen lassen. Aus entsprechenden lo-

gischen Formeln können dann zum Beispiel effiziente Monitore generiert werden, welche

die beschriebenen Programme zur Laufzeit überwachen und feststellen können, ob es

Abweichungen von der Spezifikation gibt.

Diese Logiken können je nach erlaubten Operatoren undQuantoren unterschiedlich aus-

drucksstark sein. Es gilt also, möglichst Logiken zu konstruieren, welche einem erlauben,

interessante Eigenschaften auszudrücken und dabei möglichst einfach überprüfbar oder

überhaupt entscheidbar bleiben. Die auf LTL basierende Logik Freeze-LTL erlaubt das

Speichern eines Wertes in einem Register und eine spätere Prüfung auf Gleichheit. In

dieser Arbeit wird eine neue Logik definiert und es wird gezeigt, dass Entscheidbarkeit in

der resultierenden Logik gewahrt bleibt. Diese Logik kombiniert zwei unterschiedliche

Erweiterungen von Freeze-LTL – einerseits die Möglichkeit, mit mehreren geordneten

Attributen zu arbeiten, solange diese eine gewisse hierarchische Struktur aufweisen,

andererseits die Möglichkeit, über vergangene Werte zu quantifizieren oder einen zukün-

ftigen Wert zu raten, für den oder die dann etwas gelten soll.

vii

Contents

1 Introduction 1
1.1 Background and related work . 1

1.2 Contribution of this thesis . 4

2 Definition of the logic 5
2.1 Preliminaries . 5

2.2 Syntax and semantics . 11

3 Nested Register Automata 15
3.1 Definition of NRA . 15

3.2 Emptiness of NRA . 19

3.2.1 Preliminaries . 19

3.2.2 Proof of decidability . 24

4 Decidability of the logic 31
4.1 Linearisation from LTL↓

A to LTL↓
[k] . 31

4.2 Translation of formulae to NRA . 39

5 Summary and Open Questions 45

ix

1 Introduction

1.1 Background and related work

Our modern world is increasingly dependent on the correct functioning of different

technical systems – from electronic household devices to factories producing goods

and space stations floting in orbit. As these systems are becoming more and more

complex, there is a need for tools that allow to express how we expect these systems

to behave and also supervise and evaluate their work. The field of formal verification

is researching and providing the world with exactly such tools, enabling us to model

different systems, specify the expected behaviour and verify that the actual behaviour

does indeed correspond to our model.

As such systems are mostly implemented with computers that run according domain

specific software, a big part of system verification is especially software verification,

which includes two approaches complementing each other – on the one hand static

methods based on analysis of the source code prior to its deployment, e.g. by usage

of strong type systems, consequent unit testing, etc., on the other hand more dynamic

approaches, e.g. monitoring the execution of a program to detect deviations from the

expected behaviour, either to resolve problems on-the-fly, or analyse and fix them later.

Most methods of system specification employ some kind of formal language, as natural

language, with its ambiguities and its verbosity, is obviously not adequate for this role.

While first-order logic, which is used ubiquitously in mathematics, proved itself to be a

good language to express different notions in a concise and exact way, it is not a good fit

in this context, for the simple reason that automated verification of formulae in first-order

logic is not possible in general. Basic propositional logic, on the other hand, may be too

weak to express many desirable properties or just too cumbersome to use.

What all systems have in common is that they all compute or do something, which implies

some form of progress or behaviour and thereby a notion of time – only in the context of

1

1 Introduction

time it is possible to talk about change and hence about behaviour or progress. Therefore

it is helpful, if the language used to express properties of a system includes facilities to

express change over time.

Linear Temporal Logic (LTL) is a formal logic that allows the expression of propositions

with respect to a notion of time. Pnueli (1977) was the first one proposing to use it for

formal verification of computer programs.

LTL is syntactially an extension of classical propositional logic (i.e. formulae with just

∨,∧,¬ etc.) that includes time-related operators. LTL formulae are usually checked on

sequences of sets of propositions that encode different events. The time operators can

refer to different positions in a sequence, for example the operator X (“next”) expresses

that something must be true in the next position of a given sequence and ϕUψ (“until”)

expresses that ψ must be true at some point in the future (i.e., later position in the

sequence) and until then ϕ must be true. Other useful time-related operators can be

defined using these two, commonly used are e.g. F (“finally”), expressing that something

must be true at some point in the future and G (“globally”), expressing that something

must be true forever.

Today many LTL variants and extensions exist, each with a different set of permitted

operators and different semantics. For example, LTL can contain different operators

to refer to events in the future and in the past, so the operators may have past-time

counterparts like X−1 to refer to the previous position, etc. Also, different LTL variants

are designed for finite and (theoretically) infinite sequences, because different semantics

are needed as a consequence of dealing with infinity. Decidability results for variants

of LTL logics then depend on the different characteristics of the logic, e.g. among other

things, the presence or absence of past-time operators.

While sequences give events or points in time an ordering, they normally do not allow

to quantify the time that passed between them. Therefore Henzinger (1990) introduced

the freeze quantifier as a means to store a kind of timestamp assigned to each position

in some sequence and later compare it to a different timestamp. Based on this idea the

Timed Propositional Temporal Logic (TPTL) has been introduced over timed state sequences,

sequences associated with a monotonically growing value representing time. The idea

of such a freeze quantifier was then investigated in different other contexts, where the

values to be stored and compared not necessarily represent points in time and where

models obey completely different constraints than the ones assumed in TPTL.

2

1.1 Background and related work

One such development is Freeze LTL, which is an extension of LTL that considers se-

quences called data words which additionally contain a single arbitrary data value from

an infinite data domain in each position. It adds the freeze and check operators to LTL,

allowing to store a value in a register (an abstract memory cell) and compare it with some

value contained in a different position. In Demri et al. (2005) it has been shown that this

extension is in general not decidable. Especially the addition of more than one register

to store values or the addition of past-time operators causes undecidability. In Demri

and Lazic (2009) it has been shown that LTL↓
1 is decidable. This logic is a fragment of the

general Freeze LTL defined over data words with only future-time operators, a freeze

quantifier with one register and comparison only for equality. The proof of decidability

goes via translation of the logic to Alternating Register Automata (ARA), which then are

translated to counter automata (Demri et al. (2008)) that are decidable.

In Figueira (2012) ARA are further investigated and a different, more simple and direct

proof of decidability is given that uses a technique based on well-structured transition

systems (WSTS) (Finkel and Schnoebelen (2001)) and requires no translation to a different

automata model. Further, using this technique it is shown that a strict extension of

LTL↓
1 with two new quantifiers ∃≥ and ∀≤ is also decidable, based on a translation of

formulae to corresponding ARA. The ∃≥ quantifier allows the expression of statements

that refer to some data value that may come in the future, basically guessing some

value non-deterministically and then verifying the formula for the chosen value. The ∀≤

quantifier allows for looking at past values and verify a formula for all of them. It is also

shown that the dual operators ∃≤ and ∀≥ are not decidable.

A different extension based on LTL↓
1 is LTL↓

A introduced by Decker and Thoma (2015). It

still has just one register, but increases the expressivity by a semantics that gives more

structure to the value associated with a letter. This is done by assuming a set of attributes

that has an appropriate ordering of the elements and encoding the values currently

assigned to these attributes in each position of a word. The possibility to compare subsets

of these attributes is limited, though. Also a restriction to tree-quasi-ordered attribute sets

(which basically means that the attributes have to depend on each other in a tree-like

parent-children-relationship) is necessary, as in in Decker and Thoma (2015) it is shown

that LTL↓
A is decidable if and only if A is a tree-quasi-ordering. This restricted, decidable

logic is called LTL↓
tqo.

A possible example application presented in Decker andThoma (2015) is the verification of

3

1 Introduction

resource acquiration by processes - considering a model with the events lock, unlock, use
and halt that may refer to some process id (pid) and resource id (res), we can write a

formula like

G(lock ⇒↓pid ((use ∧ ↑res⇒↑pid) ∧ ¬halt)U(unlock ∧ ↑pid))

encoding the statement that whenever a resource is locked, at some time it is released

again and until that happens the program is not terminated and the resource is not used

by any other process. As a resource can only be locked by one process at the same time,

we can assume that the events concerning a resource are always dependent on the current

process (if any) holding that resource.

The logic defined in this thesis combines those two different decidable extensions to give

the possibility to express formulae that can store and check multiple attributes and also to

quantify over the values in different positions. The definition of the syntax also will make

sure that the ∃≥ and ∀≤ operators can not be negated, as the negation would result in the

dual operators that are known to be undecidable. While the proof in Decker and Thoma

(2015) uses the connection found between logics on data words and counter systems

(Demri et al. (2013)) to obtain decidability and complexity results, here an adaptation of

alternative proofs based on a generalisation of ARA as given in Figueira (2012) is used to

show decidability of the logic.

1.2 Contribution of this thesis

Based on the work in Decker andThoma (2015) and Figueira (2012), in this thesis the logic

LTL↓
A[X,U,∃≥,∀x≤] is defined, which extends LTL↓

A[X,U] with the quantifiers ∃≥ and

∀x≤. Further, a corresponding automata model based on ARA and alternative decidability

proofs for LTL↓
A[X,U] are presented and extended to show decidability of the new logic

over tree-quasi-ordered attribute sets.

4

2 Definition of the logic

In this chapter I will first define the necessary structures and vocabulary, providing

examples for clarity, and then define the logic LTL↓
A[X,U,∃≥, ∀x≤] , based on the logic

LTL↓
A[X,U] from Decker and Thoma (2015) and incorporating the operators ∃≥ and ∀x≤

suggested in Figueira (2012).

2.1 Preliminaries

Definition 2.1

Let N := {1, 2, 3, . . .} denote the infinite set of positive integer numbers, N0 := N ∪ {0}
the infinite set of non-negative integer numbers and [n] := {1, . . . , n}, n ∈ N the set of

numbers from 1 to n.

Definition 2.2

Let P(M) be the set of all subsets of a set M and P<∞(M) the set of finite subsets of M.

Definition 2.3

Let f : A→ B be a function. Then dom(f) := A is the domain, cod(f) := B the codomain

and img(f) := {f(a) | a ∈ A} the image of the function f . Further BA denotes the set of

all functions from A to B.

Definition 2.4

Let f : A→ B be a function andA′ ⊆ A a subset of the domain. Then f |A′ is the restriction

f ′ : A′ → B of f with f ′(a) = f(a) for all a ∈ A′. The set of restrictions of functions from

A to B is denoted by BA
⊥ :=

⋃
A′⊆AB

A′
.

Definition 2.5 (Quasi-Orderings)

Let M be a set and 4 a reflexive and transitive relation. Then (M,4) is called quasi-

ordering.

5

2 Definition of the logic

a

cb

d

gfe

bc

a

de

(a) (b)

2

1

4

3

1

2

3

(c) (d)

Figure 2.1: Examples of reflexive and transitive orderings that are:

(a) partial (b) total (c) non-partial and non-total (d) linear

• cl(m) := {m′ ∈M | m′ 4 m} is called the downward-closure ofm ∈M .

• (M,4) is called total ordering, if for allm,m′ ∈M eitherm 4 m′ orm′ 4 m.

• (M,4) is called partial ordering, if 4 is also antisymmetric.

• A total and partial ordering is called linear ordering. When not stated otherwise, let

[k], k ∈ N denote the linear ordering ([k],≤) of the first k natural numbers.

Definition 2.6 (Graph representation of QO)

Let (M,4) be a quasi-ordering. The directed graph G = (V,E) with V = M and E =

{(m,m′) | m′ 4 m} is the graph of (M,4). The subgraph induced by the set of vertices

reachable fromm ∈M is equivalent to the downward-closure cl(m).

Reflexive and transitive edges are implied and may be omitted in the figures for better reading.

Conversely, given a directed graph G = (V,E), the induced quasi-ordering (V,4) is

constructed with 4 := {(y, x) | x, y ∈ V : (x, y) ∈ E∗}, E∗ denoting the edges of the

reflexive and transitive closure of the graph G.

In figure 2.1 you can see examples for different types of orderings represented as graphs

with edges pointing to the direction of the smaller element, e.g. if a 4 c, there is an edge

going from c to a. If the direction of the edges seems odd, consider that it leads to a

6

2.1 Preliminaries

natural representation of downward-closures. Reflexive and transitive edges are omitted,

as the graph would soon look very confusing. Whenever there is a path in the graph, you

can assume an invisible direct edge between the endpoints, so the underlying ordering

can be thought of as the reflexive and transitive closure of the depicted graph. This graph

notation will be used in multiple examples depicting some kind of ordering throughout

the thesis.

The ordering (a) in figure 2.1 is partial, as it has no symmetric edges, but not total, because

e.g. g and f can not be compared. Ordering (b) is total, as there is an (implied) edge

between all elements, but not partial, as there are multiple two-way edges, meaning that

e.g. a 4 c and also c 4 a. In (c) you see a quasi-ordering that is neither partial nor total,

while (d) is an example for an ordering which is both partial and total, resulting in the

only possible structure that can fulfil both properties, a linear chain of elements (thus the

name linear ordering).

Definition 2.7 (Tree-Quasi-Orderings)

Let (A,4) be a quasi-ordering.

• If the downward-closure Ax := cl(x) of each element x ∈ A is total, i.e.

(Ax,4 ∩(Ax × Ax)) is a total quasi-ordering, then (A,4) is a tree-quasi-ordering.

• If all downward-closures of a tree-quasi-ordering are linear, the tree-quasi-ordering is

just called tree ordering.

• The minimal elements of a tree ordering are called roots, the maximal elements are

called leaves and the downward-closures can be called paths.

• The depth (or height) ht(A) of a tree ordering A is defined as the maximal length

of strictly increasing sequences x1 ≺ x2 . . . ≺ xk of attributes in A, the depth

ht(x) = |cl(x)| of an element x ∈ A is the length of the unique linear path to a root.

In figure 2.2 you can see a tree-quasi-ordering that is not a tree ordering, as some

downward closures are not linear, e.g. in the downward closure cl(x3) you can see that
x2 4 x3 and x3 4 x2, making cl(x3) not a partial ordering. Later in this chapter we will
see a simple method how to get a tree ordering from a tree-quasi-ordering by collapsing

the strongly connected components (highlighted in gray). The root is x1, the leaves are

x3 and x8 and the depth is 4, because a strictly increasing sequence with maximal length

is x1 ≺ x4 ≺ x5 ≺ x8.

7

2 Definition of the logic

x1

x2

x3

x4

x5

x6 x7

x8

a

b

d

h

c

e f g

i

j

k l

Figure 2.2: A tree-quasi-ordering and a tree ordering

On the right you can see a tree ordering, as all downward-closures are linear. Furthermore,

it is an example for a tree ordering consisting of multiple sub-trees – tree orderings can

also be forests. The roots are a and i, while the leaves are h, e, f, g, k and l. The depth of

this tree ordering is 4 because of the sequence a ≺ b ≺ d ≺ h.

Definition 2.8 (Data Words)

Let Σ be a finite alphabet, ∆ an infinite domain of data values and A a finite set of

attributes. Then the finite sequence w = (a1,d1)(a2,d2) · · · (an,dn) ∈ (Σ ×∆A)+ is an

A-attributed data word with length |w| = n, consisting of tuples of letters ai ∈ Σ and data

valuations di ∈ ∆A which map each attribute to some data value. We use wi, i ∈ [n] to

denote the letter at the i-th position (ai,di) of the word.

If A = [k], the valuations may be called vectors and represented as k-tuples (x1, . . . , xk)

with xi ∈ ∆ so that d(i) = xi for all i ∈ [k]. If A is a different linear ordering with k

elements, it can be treated like [k], identifying each element a ∈ A with the unique size of

its downward-closure |cl(a)|, which is an element of [k].

In figure 2.3 you can see two examples for data words with a common finite alphabet

Σ = {a, b, c} and infinite value domain ∆ = (N,=), but different sets of attributes. In

the first word we have a set of attributes A1 = {x1, x2}, in the second word we have
A2 = {x1, x2, x3, x4}. As you can see, in each position of the word the value assigned to
any attribute can change. For example, in the first word in the second position we have a

valuation d2 with d2(x1) = 5,d2(x2) = 3, while in the next position we have a valuation

d3 with d3(x1) = 8,d3(x2) = 3.

A noteworthy aspect you can see is that in both examples the attributes exhibit a quasi-

ordered structure – in the first word the set A1 has the ordering relation 41= {(x1, x2)},

8

2.1 Preliminaries

a b a c b

x1 7→ 5

x2 7→ 3

x1 7→ 5

x2 7→ 3

x1 7→ 8

x2 7→ 3

x1 7→ 8

x2 7→ 2

x1 7→ 5

x2 7→ 2

b a b

x1 7→ 5

x2 7→ 2 x3 7→ 7

x4 7→ 6

x1 7→ 5

x2 7→ 5 x3 7→ 6

x4 7→ 6

x1 7→ 5

x2 7→ 2 x3 7→ 6

x4 7→ 8

Figure 2.3: Examples for data words

making (A1,41) a linear ordering. In the second word the set A2 has the relation

42= {(x1, x2), (x1, x3), (x1, x4), (x3, x4)}, making (A2,42) an example for a tree order-

ing. Exactly such types of orderings for multi-attributed data words are the kind we are

going to work with.

Unlike in the first word of figure 2.3, for linear-ordered attribute sets that are isomorphic

to ([k],≤) the attribute names in all following examples will be omitted and just addressed

with a number, i.e. the smallest attribute is just called 1, the second-smallest is called 2

and so on, up to the maximal element addressed with k, k ∈ N. The graph representation

of a linear-ordered data valuation will then just contain the values associated with the

corresponding attribute, without mentioning the actual attribute.

Definition 2.9 (Data Valuations)

Let A be a quasi-ordered set and d,d′ ∈ ∆A
⊥ some partial data valuations. d is called

equivalent to d′ (written: d ' d′) if and only if there is a bijection h : dom(d) → dom(d′)

so that for all a, a′ ∈ dom(d) : a 4 a′ ⇔ h(a) 4 h(a′) ∧ d(a) = d′(h(a)).

In figure 2.4 you can see the same attribute set multiple times, each time with different

subsets highlighted, denoting the attributes which are in the domain of the corresponding

partial data valuation. The previous definition tells us, that two partial valuations are

equivalent if the domain and ordering of both is isomorphic and the corresponding

attributes hold the same values.

Although d1 and d2 are isomorphic – you can map x2 to x3 and x4 to x5 and have a linear

9

2 Definition of the logic

x1 7→ 3

x2 7→ 5

x4 7→ 1

x3 7→ 1

x5 7→ 3

x6 7→ 3 x7 7→ 3

x8 7→ 7

x1 7→ 3

x2 7→ 5

x4 7→ 1

x3 7→ 1

x5 7→ 3

x6 7→ 3 x7 7→ 3

x8 7→ 7

x1 7→ 3

x2 7→ 5

x4 7→ 1

x3 7→ 1

x5 7→ 3

x6 7→ 3 x7 7→ 3

x8 7→ 7

x1 7→ 3

x2 7→ 5

x4 7→ 1

x3 7→ 1

x5 7→ 3

x6 7→ 3 x7 7→ 3

x8 7→ 7

x1 7→ 3

x2 7→ 5

x4 7→ 1

x3 7→ 1

x5 7→ 3

x6 7→ 3 x7 7→ 3

x8 7→ 7

Figure 2.4: Examples of different partial data valuations (d1, . . . ,d5) of the same
attribute set

ordering of size 3 in both cases – the values do not match, as 5 = d1(x2) 6= d2(x3) = 1

and 1 = d1(x4) 6= d2(x5) = 3, so d1 6' d2.

If we compare d2 and d3, we see that although the number of attributes in both subsets

is the same and we could map attributes with identical values to each other, this does

not suffice. If we would map x5 to x6 and x3 to x4, we still would have the problem that

x3 4 x5, but x4 64 x6, so the relation is not preserved in the mapping and therefore

d2 6' d3.

When comparing e.g. d2 and d4 we already can see just from the structure that d2 6' d4,

because we can not create a bijection between two subsets with different size.

Finally, for a positive example, we can conclude that d4 ' d5, because we can map x6 to

x7 and have in both cases a linear order of size 4 and also the corresponding values are

the same – trivially for the shared attributes and because d4(x6) = d5(x7) = 3.

10

2.2 Syntax and semantics

2.2 Syntax and semantics

Now we have all the pieces that we need to construct our logic:

Definition 2.10 (Syntax)

Let A be some finite set of attributes and AP a finite set of atomic propositions, p ∈ AP

and x ∈ A.

The following grammar describes syntactically valid formulae in LTL↓
A[X,U,∃≥,∀x≤] :

ϕ ::= p | ¬ψ | ϕ ∧ ϕ | ϕ ∨ ϕ

| Xϕ | ϕUϕ | ↓x ϕ | ↑x

| ∃≥ϕ | ∀x≤,ψϕ

ψ ::= p | ¬ψ | ψ ∧ ψ | ψ ∨ ψ

| Xψ | ψUψ | ↓x ψ | ↑x

Parentheses may be used freely to represent the structure of a formula.

Definition 2.11 (Syntactic sugar)

The following additional operators are regarded as syntactic sugar and can be used when

appropriate:

true := p ∨ ¬p p ∈ AP false := ¬ true

ϕ⇒ ψ := ¬ϕ ∨ ψ ϕ⇔ ψ := (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

Fϕ := true Uϕ Gϕ := ¬F¬ϕ

Xϕ := ¬X¬ϕ ϕ Rψ := ¬(¬ϕU¬ψ)

The definition 2.10 provides a minimal set of common LTL operators, as you can get most

familiar operators from well-known equivalences defined in 2.11, which use the minimal

set of operations to define everything else. By choosing this path, the core syntax is kept

small and easy to handle, while still allowing us to use convenience operators to make

formulae more readable.

Definition 2.12 (Semantics)

Let (A,4) be a finite tree-quasi-ordered set of attributes, AP a finite set of atomic proposi-

tions andΣ = P(AP) a finite alphabet encoding subsets ofAP ,w = (a1,d1) . . . (an,dn) ∈

11

2 Definition of the logic

(Σ×∆A)+ a data word of length n ≥ 1, d ∈ ∆A
⊥ a partial data valuation, i ∈ [n] a position

in w and x ∈ A.

The following satisfaction relation inductively defines the semantics of LTL↓
A[X,U, ∃≥,∀x≤] :

(w, i,d) |= p :⇔ p ∈ ai

(w, i,d) |= ¬ϕ :⇔ (w, i,d) 6|= ϕ

(w, i,d) |= ϕ ∧ ψ :⇔ (w, i,d) |= ϕ and (w, i,d) |= ψ

(w, i,d) |= ϕ ∨ ψ :⇔ (w, i,d) |= ϕ or (w, i,d) |= ψ

(w, i,d) |= Xϕ :⇔ i+ 1 ≤ n and (w, i+ 1,d) |= ϕ

(w, i,d) |= ϕUψ :⇔ ∃i≤k≤n : (w, k,d) |= ψ and ∀i≤j<k : (w, j,d) |= ϕ

(w, i,d) |= ↓x ϕ :⇔ (w, i,di|cl(x)) |= ϕ

(w, i,d) |= ↑x ϕ :⇔ ∃y∈A : di|cl(x) ' d|cl(y)

(w, i,d) |= ∃≥ϕ :⇔ ∃d′∈∆A,x∈A : (w, i,d′|cl(x)) |= ϕ

(w, i,d) |= ∀x≤,ψϕ :⇔ ∀j≤i : (w, j,dj) |= ψ ⇒ (w, i,dj|cl(x)) |= ϕ

Notice, that our storing capability is limited – we can not store and compare arbitrary

attributes by themselves, but only downward-closures of an attribute, or put in a different

way, we can only store complete paths from an attribute to a root element and compare

them to other paths. So we can only compare attributes together with all other “ancestor”

attributes they depend on.

We gain a bit of flexibility from the definition of the check-operator ↑x, as we can also
compare non-isomorphic paths. This is possible, if we previously stored an attribute with a

downward-closurewith a bigger size and then check an attributewith a downward-closure

with a smaller size. Explained visually, we can store an attribute at some deep position in

the tree and then check an attribute in a higher position. The check-operator can just

ignore the additional values, as it looks for a compatible, isomorphic downward-closure.

Obviously this does not work in the other direction, though, as we can not extend our

closure afterwards in any meaningful way. So storing a less deep attribute and checking

a deeper attribute afterwards will always fail.

For illustration, consider figure 2.5. The formula ϕ1 checks that a holds in the first posi-

tion and at the same time stores the downward-closure of the attribute x4. In the next

12

2.2 Syntax and semantics

a b

x1 7→ 5

x2 7→ 8

x4 7→ 6

x3 7→ 4

x1 7→ 5

x2 7→ 1

x4 7→ 5

x3 7→ 8
ϕ1 =↓x4 a ∧ X(b∧ ↑x3)

a b

x1 7→ 5

x2 7→ 8

x4 7→ 6

x3 7→ 4

x1 7→ 5

x2 7→ 1

x4 7→ 5

x3 7→ 8
ϕ2 =↓x4 ∧X ↑x2

Figure 2.5: An example usage of the “forgetful” check operator

1 2 3 4 5 6

c a c a b c

x1
5

x2
8

x4
6

x3
4

x1
5

x2
1

x4
5

x3
4

x1
5

x2
4

x4
5

x3
4

x1
5

x2
4

x4
9

x3
4

x1
3

x2
7

x4
3

x3
3

x1
5

x2
4

x4
3

x3
3

ϕ = F(b ∧ ∀x3≤,aX ↑x2)

Figure 2.6: An example usage of the ∀x≤,ψ operator

position it checks that b holds and compares the stored values to the downward-closure

of the attribute x3. The formula is satisfied, as the check restricts the downward-closure

of the stored attribute to x1 and x2, ignoring x4 and getting an isomorphic linear or-

dering that can be compared and indeed has the same values. In ϕ2 on the contrary,

there is no restriction of the downward-closure of x4 that has the same values as the

downward-closure of x2, so the formula is not satisfied.

For the sake of simplicity, in all examples the alphabet that is used in data words is

assumed to encode sets that contain just a single proposition with the same symbol as

the letter, so when you see an a in a data word, it really means the set containing the

proposition a, that is {a}.

13

2 Definition of the logic

b a b a a b a a

1

2

3

1

2

3

3

2

1

1

2

3

3

2

1

2

3

1

2

3

1

1

3

2

ϕ = ∃≥((b⇒ ¬ ↑3)U(a∧ ↑3))

Figure 2.7: An example usage of the ∃≥ operator

The ∃≥-quantifier allows us to guess and store an arbitrary attribute with an arbitrary

data value in the register and check that the following sub-formula is satisfied. This can be

used to express the notion that there exists some valuation in the future for which some

property holds. The ∀x≤,ψ-quantifier allows us to express that the following sub-formula
should be satisfied for all valuations of an attribute x up to the current position, for all

positions where ψ held. The ψ constraint is required for the linearisation which will

be described later and allows us to filter the set of positions to be quantified over. If

no filtering is desired, the ψ can be just set to true . In that case, the ψ may be omitted

completely, so that ∀x≤ denotes ∀x≤, true . Also, for linear orderings the x parameter can be

omitted, because there is no ambiguity with regard to the branch to be stored (as there is

only one) and the correct depth can be obtained by the automatic restriction of ↑x, as
described above.

In figure 2.6 you can see the ∀x≤,ψ operator in action — the formula checks that finally b

holds and then checks, that the data value stored for x3 in all previous positions where a

held is the same as the value stored in x2 in the next position. For the given data word

this is indeed the case — a held in positions 2 and 4, so these positions are quantified

over. b holds finally in position 5 and the values of d2 and d4 restricted to x3 are indeed

the same as the value d6 restricted to x2.

In figure 2.7 the formula says that there exists a position where a holds and that the

value of x3 at that position is never seen at previous positions at which b held. This is a

translation of the example given in Figueira (2012) of a property that can not be expressed

without the ∃≥ operator. You can verify that the formula is satisfied by observing that

the valuation in the last position of the word is never used before. Now it is clear how

the logic defined in this chapter works, but we have yet to prove that it is decidable. For

this proof we first need the automata model presented in the next chapter.

14

3 Nested Register Automata

In this chapter I will present the automata model that is used in the next chapter to prove

decidability of LTL↓
A[X,U,∃≥,∀x≤] . The automata are a generalization of alternating

register automata (ARA) as defined in (Figueira, 2012, Def. 3.1), adjusted to work with

ordered data. I will extend this automata model with the two opearations guess and
spread from Figueira (2012) that were originally missing in the generalization, but are

required for the translation of ∃≥ and ∀x≤ operators in the next chapter.

Next, I will present necessary terminology from the framework of well-structured transi-

tion systems, which was introduced in Finkel and Schnoebelen (2001) as a generalization

of multiple notions, with the aim to simplify and unify the concepts required to prove

decidability in different contexts.

Finally I will present a proof by Decker and Thoma 1 that emptiness is decidable for NRA,

which is based on this framework. The proof originally did not include the necessary

cases for guess and spread, so I will consider these cases where it is relevant, thereby
adapting it to NRA that include these two additional operations.

3.1 Definition of NRA

The k-NRA automaton we will define now is a nondeterministic one-way automaton that

can be thought of having a set of synchronized threads, working independently, with the

restriction that all threads move to the next position of the word simultaniously. Each

thread has a register, having the ability to store the data vector of a position and check

the saved value for equality at some later point.

We will extend it with the capability to guess an arbitrary data value with guess and use
spread to create new threads for each already existing thread in some specific state.

1private communication

15

3 Nested Register Automata

As our automata will run on finite data words and will be able to see just one position at

a time, it is desireble to know when we have reached the end. The following definition

offers us a clean way to express this information:

Definition 3.1

Let w ∈ (Σ×∆A)+ be a data word with |w| = n. Let typew(i) : [n] → {., .} be the word

type of w, mapping each position of the word to a symbol indicating whether there is a next

position in the word: ∀i∈[n−1] : typew(i) = ., typew(n) = ..

Using type we can access this metainformation for some word and position in the states
of our automata and . will indicate that we are at the end of the word. In the next chapter

we will need this to correctly encode the weak next operator X from some formula into a

NRA.

Definition 3.2 (k-NRA)

Let Σ = P(AP) be a finite alphabet encoding subsets of atomic propositions AP , Q a finite

set of states, q1 the initial state, k ∈ N the maximum register depth and δ : Q → Φ a

transition function from states to expressions defined by the grammar

ϕ := p | p | �? | store(q) | eqi | eqi | q ∧ q′ | q ∨ q′ | .q | guess(q) | spread(q, q′)

with p ∈ AP, q, q′ ∈ Q,� ∈ {., .}, i ∈ [k].

The tuple A = (Σ, k,Q, q1, δ) is called an alternating k-nested register automaton (NRA).

Let w ∈ (Σ×∆[k])+, |w| = n be a [k]-attributed data word of length n ≥ 1.

A configuration of A is a tuple (i, α, γ, T), where i ∈ [n] denotes the position in w, α =

typew(i) is the word type of the current position, γ = wi is the current input letter and

T ∈ P<∞(∆[k] ×Q) is the set of active threads, where a single thread (d, q) ∈ T consists

of a vector of data values d stored in its register and its current state q. The set of all

configurations of a k-NRA is denoted with CkNRA.

A state q ∈ Q is called moving, if δ(q) = .q′ for some q′ ∈ Q and a configuration is called

moving, if for all (d, q) ∈ T the state q is moving.

Let ρ = (i, α, (a,d), (d′, q) ∪ T) be a configuration. The non-moving transition relation

→ε ⊆ CkNRA × CkNRA is defined as follows:

16

3.1 Definition of NRA

ρ→ε (i, α, (a,d), {(d′, qi)} ∪ T) :⇔ δ(q) = q1 ∨ q2, i ∈ {1, 2}

ρ→ε (i, α, (a,d), {(d′, q1), (d
′, q2)} ∪ T) :⇔ δ(q) = q1 ∧ q2

ρ→ε (i, α, (a,d), {(d, q′)} ∪ T) :⇔ δ(q) = store(q′)

ρ→ε (i, α, (a,d), T) :⇔ δ(q) = eqi and ∀1≤j≤i : d(j) = d′(j)

ρ→ε (i, α, (a,d), T) :⇔ δ(q) = eqi and ∃1≤j≤i : d(j) 6= d′(j)

ρ→ε (i, α, (a,d), T) :⇔ δ(q) = β? and α = β, β ∈ {., .}

ρ→ε (i, α, (a,d), T) :⇔ δ(q) = p and p ∈ a

ρ→ε (i, α, (a,d), T) :⇔ δ(q) = p and p 6∈ a

ρ→ε (i, α, (a,d), {(e, q′)} ∪ T) :⇔ δ(q) = guess(q′), e ∈ ∆[k]

ρ→ε (i, α, (a,d), {(d′′, q1) | (d′′, q2) ∈ T} ∪ T) :⇔ δ(q) = spread(q2, q1) and (∗)

(∗): For spread(. . .) it is demanded, that all other possible →ε transitions are already

executed, in order to take into account all new data values that were possibly introduced in

these transitions.

The moving transition relation→. is defined as:

(i, ., γ, T) →. (i+ 1, α′, γ′, T ′)

with α′ = typew(i + 1), γ′ = wi+1, T
′ = {(d, q′) | (d, q) ∈ T, δ(q) = .q′} iff the

configuration (i, ., γ, T) is moving.

Finally, we define the transition relation between the configurations as →:=→ε ∪ →..

A run on a data word w ∈ (Σ × ∆[k])+ is a non-empty sequence C1 → . . . → Cn with

C1 = (1, α1, γ1, {d1, q1}). A run is accepting, iff Cn = (i, α, γ, ∅) contains an empty set of

threads. If for an automaton A there is some word w ∈ (Σ ×∆[k])∗ for which A has an

accepting run, we say that A is non-empty.

You can see in the definition of the transition relation that the different kinds of expressions

can be classified in different groups. Some of them introduce new threads, like ∧ and

spread. For example, in the case of ∧ both subformulae must be satisfied, so two threads

are created to take care of each.

Some expressions modify a thread in some way, e.g. in the case of ∨, the next state is
nondeterministically chosen from two given possibilities, in the case of guess the thread

17

3 Nested Register Automata

A = ({a, b}, 3, {q1, . . . , q8}, q1, δ)

qi 1 2 3 4 5 6 7 8

δ(qi) q2 ∧ q3 a .q4 store(q5) .q6 q7 ∧ q8 b eq2

w =

a a b

4

5

7

5

1

2

5

1

9

Figure 3.1: Example of a 3-NRA and an accepted word

nondeterministically saves a new vector in the register and continues the evaluation. So

there can only be an accepting run over a word, if one of these choices leads to success,

allowing these threads to terminate.

Some expressions eliminate threads. This happens by definition only, if the according

expression is successful, e.g. a thread with eqi only can be eliminated, if the comparison
of the data vector stored in the thread and the vector at the current position of the

word is successful. If this is not the case, this thread can not be removed, therefore the

configuration can never become moving and the automaton can not continue to read the

word.

A run always begins from an initial thread with an initial state at the beginning of the

word. In each position threads are introduced, modified or eliminated, first evaluating

all threads of non-moving expressions except spread, then the spread operation, which
depends on the other threads and therefore waits for them to include all candidates.

Finally, when all threads in the current position are at a .-expression (the configuration

is moving), the threads move on to the next position of the word. This goes on until no

more transition is possible.

Directly from this transition semantics naturally comes the definition of an accepting run –

if a run over a word stops, because there are nomore threads, it means that we successfully

checked all properties encoded in the states, ultimately leading to the termination of

all threads. If a run ends with some threads still present in the configuration, it means

that some assumption did not hold for the word, leaving the automaton in a stuck state,

unable to continue because of no more applicable transition.

In figure 3.1 you can see an NRA with 8 states depicted in tabular form. When the automa-

ton starts the run on w, it is in the configuration C1 = (1, ., (a, (4, 5, 7)), {((4, 5, 7), q1)}).
Due to the associated expression δ(q1) the initial thread gets replaced with two threads

{((4, 5, 7), q2), ((4, 5, 7), q3)}. The expression of q2 checks that a holds, which is true, so

18

3.2 Emptiness of NRA

this thread gets eliminated. Now the configuration is moving and so the expression of

q3 moves the thread to the next position of the word, changing to state q4. Next, due to

the store the thread saves the vector (5, 1, 2) of the current position into the register and
changes state to q5. Again, we are in a moving state and as this is the only action left to

do, the thread moves to the next position and changes into the state q6. Now the thread

again gets replaced with two new threads {((5, 1, 2), q7), ((5, 1, 2), q8)}. The thread in

state q7 verifies that b holds, becoming successfully eliminated. The last thread that is left

is in state q8 and also gets eliminated after successfully verifying that the first two values

of the vector (5, 1, 9) at the current position are equal to the first two values of the stored

vector. Now we are left with no threads, therefore the automaton halts, accepting the

word w.

As you can easily see, the automaton discussed above represents the LTL↓
[k] formula

ϕ = a ∧X ↓2 X(b ∧ ↑2). In the next chapter a general way will be presented to translate
arbitrary LTL↓

[k][X,U,∃≥,∀x≤] formulae into k-NRA, so that the set of accepted words of
the automaton exactly characterizes the models of the underlying formulae. But first we

need to establish the fact that is is possible to verify whether a given NRA will accept

anything at all, i.e. that the emptiness problem is decidable, as we need this property to

show the decidability of LTL↓
A[X,U, ∃≥,∀x≤] in the next chapter.

3.2 Emptiness of NRA

3.2.1 Preliminaries

The general idea of the upcoming proof is as follows. First we will show that the possible

configurations of our automaton can be seen as awell-quasi-ordering, which is an ordering

fulfilling some good properties. As a NRA configuration is quite complex, this will

be done in multiple steps building upon each other, relying on known results from

order theory. Then we will show that the transition relation of the automaton and the

well-quasi-ordering harmonize in a certain way, making the configuration graph of NRA

a well-structured transition system. Using this fact we will be able to imply that emptiness

must be decidable, by applying an according result from Finkel and Schnoebelen (2001).

Before we can start, let us formalize these concepts:

19

3 Nested Register Automata

Definition 3.3 (Well-Quasi-Ordering (WQO))

Let (M,4) be a quasi-ordering.

(M,4) is called well-quasi-ordering, if every infinite sequence of elementsm1m2m3 · · ·
from M contains two elementsmi,mj , so thatmi 4 mj and i < j.

The definition of a well-quasi-ordering basically says, that it is not possible to construct

infinite strictly decreasing sequences or infinite antichains – sequences of incomparable

elements.

Consider the partial ordering of natural numbers (N,≤). This is an example of a well-

quasi-ordering, because starting at any number n ∈ N, there are only finitely many
numbers smaller than n, so it is impossible to create an infinite sequence that is strictly

decreasing all the time – we can start the sequence decrementing n one by one, but even-

tually we reach the minimal element 1 and then we can not go down anymore.

Now consider the partial ordering of whole numbers (Z,≤) – if we start counting down,

we will never run out of smaller numbers, because there is no minimal element we will

ever run into. So the whole numbers are not well-founded and therefore (Z,≤) is not a

well-quasi-ordering. Also the ordering (N, |) is not a well-quasi-ordering, where | is the
divisibility relation – we know that there are infinitely many prime numbers, none of

them being the divisor of any other, so the sequence of prime numbers would give us an

infinite antichain.

Lemma 3.4 (Erdös & Rado)

Let ≤ be a well-quasi-ordering. Then any infinite sequence contains an infinite increasing

subsequence xi0 ≤ xi1 ≤ . . . with i0 < i1 <

Proof. See (Finkel and Schnoebelen, 2001, Lemma 2.2)

This fact is just a simple consequence from the definition of well-quasi-orderings – as

decreasing elements are finite, at some point they are exhausted. Therefore, regardless of

the element we start with, an increasing element must be taken after a finite amount of

decreasing elements in between.

20

3.2 Emptiness of NRA

Lemma 3.5 (Dickson)

Let ≤k ⊆ Nk
0 × Nk

0 be a product ordering, i.e. such that

(x1, . . . , xk) ≤k (y1, . . . , yk) :⇔ ∀i ∈ [k] : xi ≤ yi

For all k ∈ N0, (Nk
0,≤k) is a well-quasi-ordering.

Proof. See Dickson (1913).

Dicksons lemma basically says that in every subset of k-tuples of natural numbers

there exists a finite set of minimal elements with regard to the described ordering,

thereby ensuring that no infinitely decreasing sequence in such subsets is possible,

giving us a well-quasi-ordering. Originally, this lemma was used by Dickson to prove a

number-theoretic statement about perfect numbers, but the statement holds for other

product orderings based on well-quasi-ordered elements as well.

Definition 3.6 (Embedding ordering)

Let (S,4) be a quasi-ordering and x = x1 . . . xn, y = y1 . . . ym ∈ S∗, n,m ∈ N be finite

sequences of elements of S. The relation v ⊆ S∗ × S∗, such that

x v y :⇔ ∃1≤i1<...<in≤m ∀j∈[n] : xj 4 yij

is called the embedding ordering over S∗.

Lemma 3.7 (Higman)

Let (S,4) be a well-quasi-ordering and v ⊆ S∗ × S∗ be the embedding ordering over S∗.

Then (S∗,v) is a well-quasi-ordering.

Proof. See Higman (1952).

Lemma 3.8 (Finite Multiset WQO)

Let (S,4) be a WQO. (M(S),4M) is called the finite multiset WQO of (S,4) and is a

WQO for4M such that for all finite multisetsM = {m1, . . . ,mp},M ′ = {m′
1, . . . ,m

′
r} ∈

M(S),mi,m
′
j ∈ S :

21

3 Nested Register Automata

M 4M M ′ iff there is an injection h : [p] → [r] such that ∀1≤i≤p : mi 4 m′
h(i)

Proof. From each finite multiset from M = {m1, . . . ,mn} ∈ M(S) it is possible to

construct a finite sequence of the elements X = x1x2 . . . xn ∈ S∗ by linearising the

multisets in an arbitrary order using a bijection b : [n] → [n] with b(i) = j such that

mi = xj , mapping each element of the multiset to a position in the corresponding

sequence.

Now consider an infinite sequence of multisetsM1M2 . . . ,Mi ∈ M(S). For each such se-

quence letX1X2 . . . , Xi ∈ S∗ be the corresponding infinite sequence of finite sequences,

where eachXi corresponds to a multisetMi by such a bijection bi. From Higmans Lemma

(3.7) we know, that the embedding ordering over finite sequences (S∗,v) is a well-quasi-

ordering, therefore in every such infinite sequence there are someXi, Xj so thatXi v Xj

and i < j, which means that for each xk ∈ Xi there is some xl ∈ Xj , such that xk 4 xl.

Let p = |Xi|, q = |Xj|. By construction, we know that each xk corresponds to a

unique mf(k) in the according multiset Mi and each xl corresponds to a unique mg(l)

in the multisetMj by some bijections f and g. Therefore we have for all k ∈ [p] that

mf(k) 4 mg(l) for some l ∈ [q]. We can easily construct an injection h : [p] → [q] with

h(f(k)) = g(l), making sure that mr 4 mh(r) for all r ∈ [p] and therefore have by

definitionMi 4M Mj . We conclude, that (M(S),4M) is also a well-quasi-ordering.

The embedding ordering is a construction on top of sequences of quasi-ordered sets, for

example, we can define the embedding ordering over finite sequences of natural numbers.

In figure 3.2 you can see that there is a subsequence of y so that each element of x is

smaller than the corresponding element of the subsequence of y, so x v y. In the case

of z you can not find a subsequence of y that fulfills that condition, we would have to

start at the 3 which is trivially smaller or equal than the 3 in z, but then we have not

enough positions in y to find corresponding elements to each zi, so z 6v y. As we have

to match every position of the left sequence to positions of the right sequence, which

is not possible if the left sequence is longer, it is clear that y 6v x and y 6v z and that in

general this relation can only be symmetrical in cases where both sequences have the

same length. Higmans lemma tells us, that such embedding orderings are always also

well-quasi-orderings, if the underlying ordering is a well-quasi-ordering.

22

3.2 Emptiness of NRA

x = 2 1 5

v ≤ ≤ ≤

y = 1 2 3 4 5

6w ≥ ≥ ≥

z = 3 4 2 1

x =
{

2, 1, 5
}

4 M ≤ ≤ ≤
y =

{
1, 2, 3, 4, 5

}

< M ≥ ≥ ≥ ≥
z =

{
1, 2, 3, 4

}
Figure 3.2: Comparison with embedding ordering v over (N∗,≤)

and finite multiset ordering 4M over (M(N),≤)

If you remove the information about positions from some sequence, you get a set contain-

ing all these elements in an arbitrary order, possibly containing duplicates – a multiset.

In the upcoming proofs a well-quasi-ordering on multisets is sufficient and sequencing is

not required, so Lemma 3.8 applies Higman’s Lemma to multisets, removing the structure

imposed by the sequencing. In figure 3.2 you can see, that the same values as in the

embedding order, when interpreted as a multiset, can be reordered and permit more ways

to compare elements. Therefore the multiset ordering is more liberal than the embedding

order.

Definition 3.9 (Transition systems)

Let S be a set of states and→⊆ S × S be a transition relation. Then (S,→) is a transition

system.

• Succ(s) denotes the set of direct successors and Pred(s) the set of direct predcessors of
state s ∈ S.

• If Succ(s) is finite for all s ∈ S, the transition system is finitely branching.

• If Succ(s) is computable for all s ∈ S, the transition system is effective.

• A transition system with a well-quasi-order relation ≤⊂ S × S is called reflexive

downward compatible with regard to ≤, if and only if for all a1, a2, a
′
1 ∈ S with

a1 → a2 and a
′
1 ≤ a1 there exists a

′
2 with a

′
2 ≤ a2 and either a

′
1 → a′2 or a

′
1 = a′2.

The notion of a transition system is a concept unifying different constructions that use a

kind of states and transitions between them, regardless of the additional structure, like

initial and accepting states, labels and other details specific to the construction. This

way it is possible to talk about the behaviour and properties of different systems using

the same language. In our case, the configurations of the NRA automaton from the

23

3 Nested Register Automata

C = (i, α, (a,d), T), T = {((4, 3, 2), q0), ((4, 3, 6), q2), ((4, 1, 9), q1), . . .} ∈ P3

T =



4

3

2

q0

4

3

6

q2

4

1

9

q1

6

1

9

q1

6

7

4

q5


=



4

3

2

q0

6

q2

1

9

q1

6

1

9

q1

7

4

q5


= {(d1, t1), (d2, t2)} di ∈ ∆, ti ∈ P2

. . . = {(4, {(3, {(2, q0), (6, q2)}), (1, {(9, q1)})}), (6, {(1, {(9, q1)}), (7, {(4, q5)})})}

Figure 3.3: Forest representation of the threads of a 3-NRA configuration

previous chapter yield the transition system that we will talk about. Now, to show that

emptiness is decidable, the main task is to prove that NRA configurations give rise to a

well-quasi-ordering and their transition relation is reflexive downward compatible with

regard to their well-quasi-ordering, making NRA a well-structured transition system.

3.2.2 Proof of decidability

Definition 3.10 (Thread forests)

LetPk := P≤∞(∆[k]×Q), k > 0 denote the set of finite subsets of [k]-attributed NRA-threads

and P0 := P(Q).

An element T ∈ Pk can be viewed as a forest and represented as a set of tuples

{(d1, t1), . . . , (dn, tn)}, where di ∈ ∆ are the roots and ti ∈ Pk−1 are the sets of cor-

responding subtrees. Let sub(T) = {t1, . . . , tn} denote the multiset of sets of subtrees.

In figure 3.3 you can see how a set of NRA threads can be seen as a forest – a thread consists

of a state and a valuation for the linear ordered attributes. We can build a forest out of

threads using a shared data valuation prefix, because we know that the values in a linear

data vector are depending on each other. This way we obtain a compact representation of

all values which are present in the current configuration that we can better reason about.

Note however, that these forests have no relation at all to the tree-quasi-ordered attributes

from some possible underlying LTL↓
A[X,U,∃≥,∀x≤] formula, being based on data equality

on prefixes of [k]-vectors. This notion is formalized in the following definition:

24

3.2 Emptiness of NRA

Definition 3.11 (Nested permutation)

Let f : ∆[k] → ∆[k], k ∈ N be a bijection. f is a nested permutation, iff for all tuples

d, e ∈ ∆[k] the length of their longest common prefix is invariant under f .

This means, for d = (d1, . . . , dk), e = (e1, . . . , ek), f(d) = (d′1, . . . , d
′
k), f(e) =

(e′1, . . . , e
′
k) and for all 1 ≤ i ≤ k:

(d1, . . . , di) = (e1, . . . , ei) ⇔ (d′1, . . . , d
′
i) = (e′1, . . . , e

′
i)

The extension of f with regard to some set Q is defined for d ∈ ∆[k], q ∈ Q as:

f̂ : ∆[k] ×Q→ ∆[k] ×Q, f̂(d, q) = (f(d), q)

Using the definition of nested permutations we now will define multiple relations that

treat different threads as equal modulo consistent renaming of the data values. As we

will see, this allows us to basically collapse the infinite data domain into a finite set of

structurally equivalent cases with the same relationships and treat them as the same

thing.

Definition 3.12 (4k)

Let 4k ⊆ Pk × Pk be an ordering relation on subsets of k-NRA threads such that for

T, T ′ ∈ Pk, T 4k T
′ iff there is a nested permutation f , so that T ⊆ f̂(T ′).

Definition 3.13 (∼)
Let ∼ ⊆ CkNRA × CkNRA be an equivalence relation on k-NRA configurations such that

(i, α, (a,d), T) ∼ (i′, α′, (a′,d′), T ′) iff α = α′, a = a′ and there is a nested permutation f

such that f̂(T) = T ′ ∧ f(d) = d′.

Definition 3.14 (�)
Let � ⊆ CkNRA × CkNRA be an ordering relation on k-NRA configurations such that

(i, α, (a,d), T) � (i′, α′, (a′,d′), T ′) iff α = α′, a = a′, d = d′ and T ⊆ T ′.

Definition 3.15 (-)

Let - ⊆ CkNRA × CkNRA be an ordering relation on k-NRA configurations such that c - c′ iff

there is a c′′ ∼ c′ with c � c′′.

The 4k relation compares raw sets of threads with each other, establishing a kind of

25

3 Nested Register Automata

indirect subset relation and∼ relation is an equivalence relation on configurations. The�
relation is an exact relation in the sense that it only compares configurations with sets of

threads that are truly in direct subset relation, giving a partial ordering on configurations.

Finally- combines∼with� to regain the indirect semantics and compare configurations

with similar, but not necessarily equal thread sets, basically lifting4k from sets of threads

to configurations.

This is sensible, because what matters for acceptance is not particular values, but how

the values that are present in some data word and configuration relate to each other with

regard to attribute equality, as defined by our semantics. More importantly, we will see

that - has the properties we need to make NRA a well-structured transition system.

Lemma 3.16

(Pk,4k) is a well-quasi-ordering.

Proof. By induction on k. For k = 0 we have by definition P0 = Q and then 40 = ⊆ is

the subset ordering on the finite set Q, which is trivially a WQO.

Now let k > 0 and assume that (Pk−1,4k−1) is a WQO. We show that (Pk,4k) is a WQO

as well.

Consider an infinite sequence T1T2 . . . of elements of Pk. In the corresponding se-

quence sub(T1)sub(T2) . . . we find two positions i < j with sub(Ti) 4M
k−1 sub(Tj),

since (M(Pk−1),4M
k−1) is a finite multiset WQO by Lemma 3.8. Assume in the following

R := Ti = {(d1, r1), . . . , (dn, rn)} and S := Tj = {(e1, s1), . . . , (em, sm)}. We construct

a nested permutation witnessing that R 4k S.

Since sub(R) 4M
k−1 sub(S), there is an injection h : [n] → [m] with ri 4k−1 sh(i) for

all 1 ≤ i ≤ n. This in turn means that for each ri there is an (extension of a) nested

permutation fi : Pk−1 → Pk−1 with ri ⊆ f(sh(i)) and for each of them we define

f̂i : ({eh(i)} ×∆[k−1] ×Q) → ({di} ×∆[k−1] ×Q) with f̂i(eh(i),d) = (di, fi(d)) for all

d ∈ ∆[k−1] ×Q.

That is, f̂i simply lifts the witnessing permutation for the ri 4k−1 sh(i) in the unique

possible way to the corresponding trees (di, ri) ∈ R and (eh(i), sh(i)) ∈ S. Since h is

injective, the data values eh(i) for all 1 ≤ i ≤ n are all different. We therefore can choose

an (extension of a) nested permutation f̂ : Pk → Pk such that f̂(eh(i),d) = f̂i(eh(i),d) =

(di, fi(d)).

26

3.2 Emptiness of NRA

By construction we have that R ⊆ f̂(S) since the nested permutations fi guarantee that

property on the subtrees and h is injective meaning that each tree in R corresponds to a

distinct subset of img(f̂). We conclude that R 4k S.

Lemma 3.17

For all configurations c1, c
′
1, c2 ∈ CkNRA for a fixed k ∈ N with c1 ∼ c′1 and c1 → c2 there is

a configuration c′2 ∈ CkNRA with c′2 ∼ c2 and c
′
1 → c′2.

Proof. Let f be a nested permutation witnessing the equivalence of c1 and c
′
1. The proof

follows by a case analysis of the transition relation→ (Definition 3.2).

In case of eqi, if two vectors d,d′ are identical at every position j ≤ i, their counter-

parts f(d), f(d′) will be as well by Definition 3.11, leading to identical behaviour in the

transformed thread set – the elimination of the according thread. The case for eqi is
similar.

All other cases do not depend on the data vectors in the configuration at all and therefore

the corresponding action still can be performed in the transformed configuration c′1 and

in every case the permutation f still witnesses the equivalence of the respective following

states c2 and c
′
2, hence c2 ∼ c′2.

In the case of guess a new valuation can be guessed and stored in the register regardless

of the previous value stored, so this action can be performed from any c′1 and leads to a

corresponding state c′2, where the register of the according thread is overwritten with

the guessed value.

Similarily, in the case of spread the action does not depend on the stored vector, and as
there exists the same number of threads in state q1 in c

′
1 as in c1, according threads in

state q2 can be created leading to the configuration c
′
2.

Lemma 3.18

For a fixed k ∈ N, (CkNRA,-) is a well-quasi-ordering.

Proof. For some fixed k, every infinite sequence of configurations contains an infinite

subsequence of configurations c1c2 . . . ∈ CkNRA with cj = (ij, α, (a,dj), Tj) where α and

27

3 Nested Register Automata

a are fixed, as the possible values for α and a are finite. Due to Lemma 3.16 and Lemma

of Erdös and Rado (3.4) we can assume that the Tj are increasing, i.e. Tj 4k Tj+1.

Let Tj,l := {dj(1), . . . ,dj(l), . . . ,dj(k), q) ∈ Tj} be the subtree of Tj starting with

dj(1), . . . ,dj(l) for any 1 ≤ l ≤ k. Consider now the sequence of tuples S1S2 . . . with

Sj = (Tj, Tj,1, . . . , Tj,k). Due to Lemma 3.16 we have a WQO on every component and

by Dicksons Lemma (3.5) a WQO on the tuples.

Thus, this sequence contains two tuples Sm and Sn with m < n. Due to the fact that

subtrees in Tm starting with prefixes of dm are smaller with respect to 4k than subtrees

in Tn starting with prefixes of dn, dn can be mapped to dm by the nested permutation

underlying -. It follows that cm - cn and therefore (CkNRA,-) is a WQO.

The construction of the tuples Sj with the series of the Tj,l subtrees is a means to abstract

away the actual data values, while preserving the structural relationship between the

data valuation dj at some position ij and the valuations stored inside of the threads. This

finally allows us to argue that the configurations give rise to a well-quasi-ordering.

Lemma 3.19

For a fixed k ∈ N, (CkNRA,→) is reflexive downward-compatible with respect to (CkNRA,-).

Proof. In Lemma 3.17 it has been shown, that for any two equivalent configurations the

same actions can actually be performed, which was just assumed implicitly in Figueira

(2012). Other than that it is the same proof as (Figueira, 2012, Lemma 3.10), verifying the

property by a case analysis on the transition relation.

We explicitly examine the cases for guess and spread:

Let k ∈ N be fixed and c1, c2, c
′
1 ∈ CkNRA with c1 → c2 and c

′
1 - c1. We will see that there

is a c′2 such that c
′
2 - c2 and either c

′
1 → c′2 or c

′
2 = c′1.

As - implies the existence of a nested permutation f witnessing c1 ∼ c′1, without loss of

generality we assume now that c′1 � c1.

If a guess is performed, let

c1 = (i, α, (a,d), {(d′, q)} ∪ T) and c2 = (i, α, (a,d), {(e, q′)} ∪ T)

28

3.2 Emptiness of NRA

with δ(q) = guess(q′) and let c′1 = (i′, α, (a,d), T ′).

Suppose that there is (d′, q) ∈ T ′. We take the guess transition from c′1 and obtain a c
′
2 by

guessing e, hence c′2 - c2 holds by the same nested permutation witnessing that c
′
1 - c1.

Otherwise, if (d′, q) 6∈ T ′, we set c′2 = c′1 and also have c
′
2 - c2, because we know that

c′2 = c′1 - c1 � c2.

If a spread is performed, let

c1 = (i, α, (a,d), {(d′, q)} ∪ T) and c2 = (i, α, (a,d), {(d, q1) | (d, q2) ∈ T} ∪ T)

with δ(q) = spread(q2, q1) and let c′1 = (i′, α, (a,d), T ′).

Suppose that there is (d′, q) ∈ T ′. We take the spread transition and obtain a configuration
c′2 with c

′
2 - c2, because any (e, q1) in c

′
2 generated by the spread must come from a

(e, q2) in c
′
1, hence there is some (e, q2) in c1 which leads to (e, q1) in c2. If (d

′, q) 6∈ T ′,

by a similar argument as above we set c′2 = c′1 and also have c
′
2 - c2.

Theorem 3.20 (Emptiness of NRA)

Emptiness is decidable for NRA.

Proof. To decide emptiness of an NRA we have to decide whether an accepting config-

uration is reachable, i.e. a configuration where the set of threads is empty. By Lemma

3.18 and 3.19, (CkNRA,→,-) is a downward-WSTS with reflexive compatibility in the sense

of (Finkel and Schnoebelen, 2001, Definition 5.1). Further, the relation - is decidable

and the transition relation → is effective. Since the set of accepting configurations is

downward closed, it follows from (Finkel and Schnoebelen, 2001, Proposition 5.4) that it

is decidable whether one of them is reachable.

As you can see in comparison with the corresponding proof for ARA, the part requiring

the most work is showing that - (as defined for NRA) is a well-quasi-ordering, because

of the more complex, nested structure of the data values in each thread. The introduction

of guess and spread on the other hand does not require much additional effort in these
proofs and their cases in the analysis of the transition relation do not pose any problems

and work in exactly the same way as for ARA.

29

4 Decidability of the logic

In this chapter I will show that it is possible to translate any LTL↓
A[X,U,∃≥,∀x≤] formula

over tree-ordered attribute sets into NRA accepting exactly the same words which satisfy

the underlying formula.

As NRA are defined over [k]-attributed data words (which are easier to reason about),

but we want to show decidability for formulae expressing properties of more general

A-attributed datawords, first I will present away to translate arbitrary LTL↓
A[X,U,∃≥,∀x≤]

formulae to equisatisfiable LTL↓
[k][X,U,∃≥,∀x≤] formulae, using the linearisation tech-

nique from Decker and Thoma (2015) and extending it with the corresponding cases

for the ∃≥ and ∀x≤ operators. Next, I will show how to translate LTL↓
[k][X,U,∃≥,∀x≤]

formulae into NRA automata, again extending a proof by Decker and Thoma 1 with the

respective cases. This is basically the same procedure as described in (Figueira, 2012,

Theorem 4.4), but generalised from ARA to NRA.

Having seen a model-preserving translation and using the fact that NRA emptiness is

decidable this will finally prove the decidability of the logic.

4.1 Linearisation from LTL↓
A to LTL↓

[k]

When looking at general tree-quasi-ordered attribute sets one can see a possible problem

— attributes that depend on each other, i.e. elements in the same strongly connected

component in the corresponding graph representation have the same downward-closure.

As the logic can only store downward-closures, we have no way to distinguish between

such attributes. But as from our perspective these attributes are the same, we can make

this explicit and simplify our model by encoding all components into a single attribute:

1private communication

31

4 Decidability of the logic

Lemma 4.1 (Collapsing of the strongly connected components)

Let A be a tree-quasi-ordered set of attributes. Every LTL↓
A formula ϕ can be translated to

an equisatisfiable LTL↓
A′ formula ϕ′, where A′ is a tree ordering.

Proof. LetCi,j be all maximal (thus disjoint) strongly connected components of the graph

G = (V,E) of A, where i denotes the size |Ci,j| of the component and j enumerates
components of the same size.

As the downward-closure of each element from the same SCC is identical, all attributes

of a SCC can be encoded into a single attribute, because the set of possible values is

infinite. To do this, choose for each Ci,j an arbitrary representative element xi,j ∈ Ci,j

and remove all other elements from the component. Because of transitivity it is assured

that any edge between two components exists between any pair of elements from these

components. Therefore we can simply restrict the edges to the representatives without

affecting the relationships between components:

V ′ =
⋃
i,j

{xi,j}, E ′ = E ∩ (V ′ × V ′)

The graph G′ = (V ′, E ′) is now an acyclic graph representing a partial tree ordering

A′.

In the formula ϕ replace every attribute x ∈ Ci,j with the chosen representative xi,j .

Now, concering the data valuation equivalence ' a loss of information happened – if

previously the comparison between attributes from components with different sizes would

have failed because of a lack of isomorphism, in the formula with the collapsed attributes

such comparisons could succeed. To prevent this, we add an additional constraint:

γ =
∧

xi,j,xi′,j′∈A′,i 6=i′
G(↓xi,j ¬F ↑xi′,j′)

This constraint demands that two collapsed attributes from components that had different

sizes never have the same valuation, which again is possible to grant due to the infinity of

the data domain. Therefore the resulting LTL↓
A′ formula ϕ′, consisting of ϕ with replaced

attributes and this constraint γ, is equisatisfiable with regard to the original LTL↓
A formula

ϕ.

32

4.1 Linearisation from LTL↓
A to LTL↓

[k]

x1

x2

x3 x4

x5

x6

x7

x8

x9 x10

collapse

x1

x3 x7

x9

Figure 4.1: Example of the collapsing of a tree-quasi-ordering

In figure 4.1 you can see a tree-quasi-ordering which has been collapsed to a tree ordering.

The components with more than one attribute have been merged into a single represen-

tative attribute highlighted in bold font. In the original ordering the downward-closures

of the attributes x2, x3, x4, x5 are identical and have the size 5, whereas the downward-

closures of the attribues x6 and x7 are also identical, but have the size 3, so a valuation

comparison for attributes of these two different components can not happen – there is no

way for the check-operator to further restrict the bigger component. But in the resulting

ordering there is nothing preventing us from comparing the representatives x3 and x7,

so we need the described constraint that forces us to assign different values to them, so

that the comparison can never be successful.

As our goal is to translate formulae over tree-quasi-ordered attributes to formulae over

linear ordered attributes, we first need to ensure that all models of the original formula

can be also expressed for the resulting formula. We show that this is the case by describing

the following encoding, which translates an arbitrary A-attributed data word into an

equivalent data word over [k]-vectors.

Definition 4.2 (Frame encoding)

Let A be a tree ordering, k = ht(A) be the depth of A and w ∈ (Σ×∆A)+ a data word of

lengthm. We can translate the A-attributed data word w to a [k]-attributed data word w′

in the following way:

First, the tree ordering has to be padded with dummy attributes, so that every leaf of

a tree has a path of length k to a root. So for each attribute x ∈ A with depth l =

ht(x) < k we add a series of additional attributes xl+1, . . . , xk and add the relations

x 4 xl+1, xl+1 4 xl+2, . . . , xk−1 4 xk to our ordering, obtaining the padded ordering A
′.

As all added attributes are larger than the original attributes, they are never part of the

33

4 Decidability of the logic

downward-closures, in no way affecting the semantics of formulae over A. In each position

of w these dummy attributes can be assigned arbitrary values without changing the property

of being a model of a formula or not.

Let l1, . . . , ln ∈ A′ be the leaves of A′ and let xj,1 4 . . . 4 xj,k = lj be the path of

attributes of cl(lj), representing a branch of the tree from the leaf lj to a root. Let the leaves

be enumerated in an arbitrary but fixed order such that paths sharing a common prefix

are ordered consecutively. We encode each position (ai,di) of w in a sequence of positions

(ai, gi,1) . . . (ai, gi,n). Each such sequence of n positions is called frame. In every frame each

position holds the same letter as the original position ai, while each one of the valuations

gi,j ∈ ∆[k] encodes one branch di|cl(lj) of the padded original valuation di ∈ ∆A′
, assigning

gi,j(r), r ∈ [k] the value of di(xj,r).

The concatenation of the frames (a1, g1,1) . . . (a1, g1,n) (am, gm,1) . . . (am, gm,n) is

the corresponding data word w′.

Definition 4.3

Let A be a tree ordering, x ∈ A and l1, . . . , ln be the leaves of A, enumerated in some order

in the sense of Definition 4.2.

• sb(x) = min{1 ≤ r ≤ n | x 4 lr}
denotes the index of the smallest branch of A containing x.

• lb(x) = max{1 ≤ r ≤ n | x 4 lr}
denotes the index of the largest branch of A containing x.

In figure 4.2 you can see a frame encoding in practice – the tree ordering has the depth

3, so vectors of size 3 are used to encode all branches of the tree and as there are three

leaves in this tree (the padding does not change the number of leaves, as only a linear

chain is added), there are three positions in each frame, resulting in a word with thrice

the size, but having “flattened” the tree structure. The gray values are the arbitrarily

assigned values for the padded attributes, because all vectors must have the same size.

This procedure works in the same way for attribute sets with an ordering that induces

multiple trees, because multiple root elements are allowed. In this case the trees just

need a fixed order in which they appear in the frames.

34

4.1 Linearisation from LTL↓
A to LTL↓

[k]

b a c

x1 7→ 5

x2 7→ 2 x3 7→ 7

x4 7→ 6 x5 7→ 8

x1 7→ 7

x2 7→ 5 x3 7→ 6

x4 7→ 2 x5 7→ 4

x1 7→ 3

x2 7→ 2 x3 7→ 6

x4 7→ 8 x5 7→ 7

⇓ encode ⇓

b b b a a a c c c

5

2

1

5

7

6

5

7

8

7

5

9

7

6

2

7

6

4

3

2

5

3

6

8

3

6

7

Figure 4.2: Example of the frame encoding from words over tree orderings to words

over [k]-vectors

Now, before coming to the linearisation, we need some equivalences that are required by

the transformation of the formula. They were assumed in Decker and Thoma (2015), but

are shown here explicitly for the sake of completeness.

Lemma 4.4 (Equivalences in Freeze LTL)

The following equivalences apply for arbitrary formulae ψ, ξ, propositions p ∈ AP and

attributes x, y ∈ A:

↓x p ≡ p

↓x↓y ψ ≡↓y ψ
↓x ¬ψ ≡ ¬ ↓x ψ

↓x (ψ ∧ ξ) ≡ (↓x ψ) ∧ (↓x ξ)
↓x (ψUξ) ≡ (↓x ξ) ∨ ((↓x ψ)∧ ↓x X(ψUξ))

Proof. Let ψ, ξ be arbitrary formulae, p ∈ AP an arbitrary proposition and x, y ∈ A

arbitrary attributes. The equivalences are proved individually, using the definition of the

satisfaction relation:

35

4 Decidability of the logic

1.

(w, i,d) |=↓x p ⇔ (w, i,di|cl(x)) |= p ⇔ p ∈ ai ⇔ (w, i,d) |= p

2.

(w, i,d) |= ↓x↓y ψ ⇔ (w, i,di|cl(x)) |= ↓y ψ

⇔ (w, i,di|cl(y)) |= ψ ⇔ (w, i,d) |= ↓y ψ

3.

(w, i,d) |= ↓x ¬ψ

⇔ (w, i,di|cl(x)) |= ¬ψ

⇔ (w, i,di|cl(x)) 6|= ψ

⇔ (w, i,d) 6|= ↓x ψ

⇔ (w, i,d) |= ¬ ↓x ψ

4.

(w, i,d) |= ↓x (ψ ∧ ξ)

⇔ (w, i,di|cl(x)) |= ψ ∧ ξ

⇔ (w, i,di|cl(x)) |= ψ and (w, i,di|cl(x)) |= ξ

⇔ (w, i,d) |= ↓x ψ and (w, i,d) |= ↓x ξ

⇔ (w, i,d) |= (↓x ψ) ∧ (↓x ξ)

5. Using the known unwrapping of U and equivalence 4:

(w, i,d) |= ↓x (ψUξ)

⇔ (w, i,d) |=↓x (ξ ∨ (ψ ∧ X(ψUξ)))

⇔ (w, i,d) |= (↓x ξ)∨ ↓x (ψ ∧ X(ψUξ))

⇔ (w, i,d) |= (↓x ξ) ∨ ((↓x ψ)∧ ↓x X(ψUξ))

36

4.1 Linearisation from LTL↓
A to LTL↓

[k]

Theorem 4.5 (Linearisation)

If A is a tree-quasi-ordered set of attributes of depth k, then every LTL↓
A formula can be

translated into an equisatisfiable LTL↓
[k] formula.

Proof. Using Lemma 4.1 we can first translate the formula into one over a tree-partial-

ordered attribute set. Therefore, without loss of generality, we assume now that A is a

tree-ordering.

In Definition 4.2 an encoding has been presented that allows the translation of data

words over tree-ordered attribute sets into data words over [k]-vectors. What is left

to show is that we can correctly translate any LTL↓
A formula Φ over data words with

tree-ordered attributes into an LTL↓
[k] formula Φ̂ that is checked over the corresponding

frame-encoded data words.

Using the equivalences proven in Lemma 4.4 we can assume that Φ̂ is in a normal form

where every freeze quantifier ↓x is immediately followed by either X or ↑y for attributes
x, y ∈ A. Further it can be assumed for every formula ↓x↑y that sb(x) ≤ sb(y):

If x ≺ y or x < y, we can completely remove the formula, replacing it respectively with

a contradiction or tautology, e.g. false or true , because if x ≺ y, the attributes can not

be compared in any way and if x < y, because of the specified semantics the comparison

will always be true – the check operator can then restrict d|cl(x) to d|cl(y), essentially

comparing y to y. Hence now assume x and y to be incomparable with regard to the

attribute ordering A.

If ht(x) < ht(y), again there is no way to compare the attributes, making it a contradiction.
If ht(x) ≥ ht(y), there exists a unique attribute p ≺ x with ht(p) = ht(x) (because the
downward-closures are linear) which will be used for comparison by definition of the

semantics, so we can safely replace ↓x↑y with ↓p↑y . Now, as ht(p) = ht(y), we can swap
p and y, if necessary.

We extend the alphabet to add new propositions p1, . . . , pn that are supposed to indicate

the position in the current frame and demand that each letter contains one of these

propositions, making these propositions a kind of cyclic counter.

Now we have to enforce that data words indeed have the assumed structure. First we

37

4 Decidability of the logic

check that the assumed counter works as expected:

β1 := p1 ∧ G

 ∧
i∈{1,...,n}

pi ⇒

 ∧
j∈{1,...,n}\{i}

¬pj ∧ (Xp(i mod n)+1)


Next we check that the letter in positions within the same frame does not change:

β2 :=
∧
a∈Σ

G(p1 ∧ a⇒ aU(pn ∧ a))

Finally we verify that each attribute is consistently encoded throughout every frame. In

the assumed encoding each attribute can be identified by its depth in the linear ordering

and the positions that encode it within a frame, so we ensure this property by verifying

for each attribute that the subvectors encoding it are equal in all positions of a frame

encoding this attribute:

β3 :=
∧
x∈A

G
(
psb(x) ⇒↓ht(x) (↑ht(x) U(plb(x)∧ ↑lb(x))

))

Nowwe inductively define the translation t(ϕ) for subformulae ξ, ψ of φ, x ∈ A, a ∈ Σ:

t(a) := a

t(¬ψ) := ¬t(ψ)
t(ψ ∧ ξ) := t(ψ) ∧ t(ξ)
t(Xψ) := ∧nj=1pj ⇒ Xn−j+1t(ψ)

t(ψUξ) := (p1 ⇒ t(ψ))U(p1 ∧ t(ξ))
t(↓x ψ) := Xsb(x)−1 ↓ht(x) t(ψ)

t(↑x) := ∧nj=1pj ⇒ Xsb(x)−j ↑ht(x)

t(∃≥ψ) := ∃≥t(ψ)

t(∀x≤,ψξ) := ∀ht(x)
≤,ψ∧psb(x)

t(ξ)

The formula Φ̂ = t(Φ) ∧ β1 ∧ β2 ∧ β2 exactly characterizes the encodings of models of
Φ, because of the invariant that all subformulae are evaluated on the first position in a

frame, except those preceded by a freeze quantifier. Those subformulae that follow a

38

4.2 Translation of formulae to NRA

freeze quantifier are either Xψ or ↑y and are relocated to the first position of the next
frame, or the position encoding the branch that needs to be checked, respectively.

The direct translation of ∃≥ works, because the definition of data valuation equivalence

does not depend on the attribute the data is from, only enforcing that both valuations

being compared have an isomorphic structure. As in our encoding the underlying linear

ordering [k] is capable of storing any branch from our initial tree ordering A and the

codomain (the possible data values) in both encodings and for all attributes is the same,

the translated ∃≥-operator can still “guess” any possible valuation for any A-attribute,

independently of the current position – we can always choose the [k]-attribute isomorphic

to the A-attribute we are going to check, as all such isomorphic A-attributes are mapped

to the same [k]-attribute, just in different positions (as the mapping of a singleA-attribute

to a single [k]-attribute is not injective). Therefore it suffices to guess a [k]-vector at the

beginning of the frame, as it can be checked against an arbitrary attribute.

The translation of ∀x≤,ψ works by translating the A-attribute x from the original formula

to the corresponding [k]-attribute ht(x) and extending ψ with the constraint that we

only consider the first position in a frame containing a branch with the attribute x. This

is necessary, because (as described above) in different positions the same [k]-attribute

can encode different isomorphic A-attributes of the initial formula, depending on the

underlying tree ordering. This is also sufficient, as we can assume (because of the formula

β3) that the valuation of the corresponding [k]-attribute stays the same in all positions of

the frame where x is encoded, so we do not have to check the attribute in all positions of

a frame where it is encoded.

4.2 Translation of formulae to NRA

Now we will translate the linearised formulae into NRA, which are perfectly tailored

for our purpose, supporting all operations that are necessary to verify the underlying

LTL↓
[k][X,U, ∃≥,∀x≤] formula on a suitable data word. Each state of the automaton essen-

tially will encode the outermost token of a subformula that is left to verify, “branching”

up for binary or n-ary operators connecting the subformulae.

39

4 Decidability of the logic

Theorem 4.6 (Translation from LTL↓
[k][X,U,∃≥,∀x≤] to k-NRA)

Every LTL↓
[k][X,U,∃≥,∀x≤] formula ϕ can be translated into a corresponding k-NRA Aϕ,

so that for every non-empty data word w ∈ (Σ×∆[k])+:

w satisfies ϕ⇔ Aϕ accepts w

Proof. Let ϕ ∈ LTL↓
[k][X,U,∃≥,∀x≤] be an arbitrary formula.

To take care of the ∀x≤,ψ operator we first need to enforce the creation of threads that
collect all values at relavant positions and exist until the end of the word is reached.

Let j enumerate the different ψ used to filter the quantification and ψj be the j-th such

formula.

We define the formulae ηj := G(ψj ⇒↓k G true) and define ϕ′ :=
∧
j ηj ∧ ϕ. In each

position each ηj checks whether ψj holds and if yes, stores the complete current valuation

in the register. When translated into an automaton, the thread corresponding to theG true
subformula is forced to run until the end of the word, verifying a tautology in every

position and successfully terminating at the end of the word, so this construction forces

the creation and accumulation of according threads in the configuration, storing these

values at each position that satisfies the corresponding ψj . Restriction of the valuation to

some specific attribute x ∈ [k] is not necessary, because it does not affect the semantics

and additional unnecessary values are simply ignored by definition of eq and eq as well
as ↑x.

Let qsave,j denote the moving state of a thread that has stored the valuation of a position

where ψj held. By definition of the transition relation it is guaranteed, that for every

value that is to be quantified over by some ∀x≤,ψj
at some position, a thread in state qsave,j

that is storing the according value will exist in the configuration at the time the according

spread-operation is executed, as it must be the last non-moving operation executed at
some position, especially coming after any store(. . .) operations.

Using the syntactic replacements X and R from 2.11 we transform ϕ′ to negation normal

form, where negation only occurs in front of propositions or ↑x, as the automaton only
permits negation in the context of checking a single proposition and comparing valuations

for equality. Then we make sure, that the formula contains no ↑j in scope of ↓i with
i < j, as this comparison is false in the semantics of the logic. Such subformulae are

replaced directly with the contradiction false . We call the modified formula ϕ̂.

40

4.2 Translation of formulae to NRA

Let sub(ϕ̂) be the set of all subformulae of ϕ̂, including the unrolling of ξUψ = ψ ∨
(ξ ∧ (ξUψ)), and all their subformulae and let 〈q〉 denote the state q ∈ Q to avoid the

confusion between states and transition expressions. To take care of the weak next

operator X, that we introduced to transform the negation before an X into an expression

that the automaton can act on, let Q. := {Xξ | Xξ ∈ sub(ϕ̂)} ∪ {〈.〉}.

Finally, let Aϕ = (Σ, k,Q, 〈ϕ̂〉, δ), k ∈ N be a k-NRA with Q = Q. ∪ sub(ϕ̂). The

transition function δ is defined as follows:

δ(p) := 〈p〉 δ(¬p) := 〈p〉

δ(ξ ∧ ψ) := 〈ξ〉 ∧ 〈ψ〉 δ(ξ ∨ ψ) := 〈ξ〉 ∨ 〈ψ〉

δ(↑i) := eqi δ(¬ ↑i) := eqi
δ(↓i ξ) := store(〈ξ〉) δ(.) := .?

δ(Xξ) := .〈ξ〉 δ(Xξ) := 〈Xξ〉 ∨ 〈.〉

δ(ξUψ) := 〈ψ〉 ∨ 〈ξ ∧ X(ξUψ)〉 δ(ξRψ) := 〈ψ〉 ∧ 〈ξ ∨ X(ξRψ)〉

δ(∃≥ξ) := guess(〈ξ〉) δ(∀i≤,ψj
ξ) := spread(qsave,j , 〈ξ〉)

Given this translation, it is clear that Aϕ accepts exactly the models of ϕ.

The translation follows directly the described intuition of the states as to-be-evaluated

subformulae and allows for a natural mapping of logical operators to expressions un-

derstood by the automaton. As you can see, some special handling is neccessary for

formulae containing negations, as the automaton does not have a corresponding univer-

sal expression. It can especially not evaluate some arbitrary subformula and then go back

to e.g. negate the result, being a one-way automaton and having this thread-eliminating

semantics.

The fact that we can not move backwards is also the reason for the construction with

the threads that run along the main thread (which is evaluating the actual formula) and

collect values in all positions we are interested in, by creating a new thread in each such

position that will only terminate at the end of the word. As we can not just go back and

compare values, we take them with us in the form of these threads. This gives us the

possibility to access these data values using spread, “forking” the according threads with
a new state to verify some property for all of them.

41

4 Decidability of the logic

The part of the proof describing the construction of the threads that collect the values

differs in presentation from (Figueira, 2012, Proposition 4.3), as the description of the

construction lacks in precision and abuses notation, assigning complex formulae to the

transition function, whereas according to the definitions the described states actually

need to be split up. The corresponding step here – the addition of the ηi formulae –

fits better into the style of the rest of this proof, describing the same construction as an

extension to the formula, before performing the actual translation from the subformulae

to states. So the same effect is achieved here in a more concise and readable way.

Now it is clear, that starting with a LTL↓
A[X,U,∃≥,∀x≤] formula we can translate it

down to a NRA, using the collapsing, frame encoding, linearisation and then translation

described in this chapter. In figure 4.3 you can see a simple formula and satisfying data

word at different stages in the series of transformations. You can see, that in many steps

there is another additional term added to the formula. This is necessary to rule out

the possibility, that words that previously did not satisfy the formula may do so in the

transformed model. So the added correction terms are basically accommodating for the

reduction or change of structure in each transformation step, always ensuring that the

original meaning of the formula, and thereby the set of models, is preserved.

Finally, using all the previous work, we are able to conclude that the logic described in

this thesis is indeed still decidable over tree-quasi-ordered attribute sets, by putting all

the pieces together:

Theorem 4.7 (Decidability)

LTL↓
A[X,U,∃≥,∀x≤] is decidable if and only if A is a tree-quasi-ordering.

Proof. For the only-if direction see (Decker and Thoma, 2015, Theorem 2) and ob-

serve, that LTL↓
A[X,U,∃≥,∀x≤] is a superset of the logic described there. Therefore,

LTL↓
A[X,U,∃≥,∀x≤] is not decidable if A is not a tree-quasi-ordering.

The other direction follows from the linearisation described inTheorem 4.5 and translation

to NRA described in Theorem 4.6. As shown in Theorem 3.20, we can decide whether an

NRA is empty. Because we can construct an NRA that accepts exactly the same words

that satisfy the underlying LTL↓
A[X,U, ∃≥, ∀x≤] formula, satisfiability for such formulae

is decidable.

42

4.2 Translation of formulae to NRA

formula ϕ data word w

a∧ ↓x3 X(¬a∧ ↑x4)

a b

x1 7→ 5

x2 7→ 2

x3 7→ 7

x5 7→ 9

x4 7→ 4

x1 7→ 5

x2 7→ 2

x3 7→ 1

x5 7→ 3

x4 7→ 7

⇓ collapsing ⇓ ⇓

a∧ ↓x2 X(¬a∧ ↑x3) ∧ γ

a b

x1 7→ 52

x2 7→ 7

x4 7→ 9

x3 7→ 4

x1 7→ 52

x2 7→ 1

x4 7→ 3

x3 7→ 7

⇓ frame encoding and linearisation ⇓ ⇓

a∧ ↓2 XX(¬a ∧ X ↑2) ∧ γ ∧ β1 ∧ β2 ∧ β3

a a b b

52

7

9

52

4

99

52

1

3

52

7

99

⇓ translation of formula to equivalent NRA ⇓

A = (Σ, 3, Q, q1, δ), δ =

qi 1 2 3 4

δ(qi) q2 ∧ 〈γ ∧ β1 ∧ β2 ∧ β3〉 q3 ∧ q4 a store(q5)

qi 5 6 7 8 9 10 …

δ(qi) .q6 .q7 q8 ∧ q9 a .q10 eq2 …

Figure 4.3: Series of transformations from LTL↓
A to k-NRA

43

5 Summary and Open Questions

In this thesis you have been introduced to the logic LTL↓
A[X,U,∃≥,∀x≤] and have seen,

how a tree-quasi-ordered attribute set and restricted quantification over data values can

be both added to LTL↓
1 in a straight-forward way, while preserving decidability.

Returning to the example given in the introduction, this means that using this logic we

can express and decide statements like

∃≥F((lock ∧ ↑pid) ∧ ¬(use ∧ ↑res)U(unlock ∧ ↑pid))

saying that at some point a resource is locked, but not used, or

G(lock ⇒ ∀pid
≤,lock(↑

res⇒↑pid))

saying that each resource is always locked by the same process.

A few other questions that could be investigated from here would be:

• Lifting the logic to data trees

• Extending the logic with a linear ordering over the data values

• Analyzing the complexity of the logic

In Figueira (2012) all results are given both for data words and data trees (which are

basically branching data words) and for reasoning about the tree variation, corresponding

proofs for alternating tree register automata (ATRA, Jurdzinski and Lazic (2011)) are

given, which can most likely be adapted to nested registers in the same way as NRA

generalize the ARA. As data trees are a natural model to represent hierarchial data like

XML documents, an interesting result in Figueira (2012) is that the forward fragment

of Core-Data-XPath (Bojanczyk et al. (2009)), consisting of the operations describing

forward navigation and equality comparison of data, is decidable. A generalization of

LTL↓
A[X,U,∃≥,∀x≤] to ATRA would bring the additional expressive power of the nested

45

5 Summary and Open Questions

attributes into the realm of XPath query validation. Furthermore, while in some cases the

same property can be expressed using either ∀≤ or ∃≥ because of the linearity of data

words, in the context of data trees the distinction between those operators becomes more

visible because of the branching structure of data trees – while ∃≥ can guess a valuation

that may be satisfied by one of the upcoming branches, we can not simulate the same

effect using the pseudo-look-behind given by ∀≤.

Next, in Figueira (2012) it is shown that decidability is preserved even if the data domain

has a linear ordering that can be accessed by the logic, replacing eq and eq with a more
powerful set of operations test(=), test(6=), test(<), test(>). A similar generalization to

an ordering over [k]-vectors in the nested register model would allow the addition of

two new corresponding operators ↑x<, ↑x> to the logic, thus extending the possibilities

for valuation comparisons and making the logic applicable to problems where such

comparisons are necessary. For example, one might want to verify that some variable is

monotonically increasing in a non-trivial piece of code – this variable could then directly

be encoded as an attribute and verified with e.g. G(↓var X ↑var
>).

In Decker andThoma (2015) it has been shown, that satisfiability is non-primitive recursive

and specifically that LTL↓
A[X,U] is Fε0-complete in terms of fast-growing complexity

classes (Schmitz (2013)). While decidability results are given for LTL↓
A[X,U,∃≥,∀x≤] , it

is still open how the added quantifiers and the other possible extensions proposed here

affect the complexity of the logic.

46

Bibliography

Bojanczyk, M., Muscholl, A., Schwentick, T., and Segoufin, L. (2009). Two-variable logic

on data trees and XML reasoning. Journal of the ACM, 56(3):1–48.

Decker, N. and Thoma, D. (2015). On freeze LTL with ordered attributes. CoRR,

abs/1504.06355.

Demri, S., Figueira, D., and Praveen, M. (2013). Reasoning about data repetitions with

counter systems. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 33–42. IEEE Computer Society.

Demri, S. and Lazic, R. (2009). LTL with the freeze quantifier and register automata. ACM

Transactions on Computational Logic, 10(3).

Demri, S., Lazic, R., and Nowak, D. (2005). On the freeze quantifier in constraint LTL: de-

cidability and complexity. In 12th International Symposium on Temporal Representation

and Reasoning TIME 2005, 23-25 June 2005, Burlington, Vermont, USA, pages 113–121.

IEEE Computer Society.

Demri, S., Lazic, R., and Sangnier, A. (2008). Model checking freeze LTL over one-counter

automata. In Foundations of Software Science and Computational Structures, 11th In-

ternational Conference, FOSSACS 2008, Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6,

2008. Proceedings, volume 4962, pages 490–504. Springer.

Dickson, L. E. (1913). Finiteness of the odd perfect and primitive abundant numbers with

n distinct prime factors. The American Journal of Mathematics, 35(4):413–422.

Figueira, D. (2012). Alternating register automata on finite words and trees. Logical

Methods in Computer Science, 8(1):1–43.

Finkel, A. and Schnoebelen, P. (2001). Well-structured transition systems everywhere!

Theoretical Computer Science, 256(1-2):63–92.

47

Bibliography

Henzinger, T. A. (1990). Half-order modal logic: How to prove real-time properties. In

Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing,

Quebec City, Quebec, Canada, August 22-24, 1990, pages 281–296. ACM.

Higman, G. (1952). Ordering by divisibility in abstract algebras. Proceedings of the London

Mathematical Society, 2(7):326–336.

Jurdzinski, M. and Lazic, R. (2011). Alternating automata on data trees and xpath satisfia-

bility. ACM Transactions on Computational Logic, 12(3):19.

Pnueli, A. (1977). The temporal logic of programs. In 18th Annual Symposium on Founda-

tions of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977,

pages 46–57. IEEE Computer Society.

Schmitz, S. (2013). Complexity hierarchies beyond elementary. CoRR, abs/1312.5686.

48

	Abstract
	Kurzfassung
	Table Of Contents
	Introduction
	Background and related work
	Contribution of this thesis

	Definition of the logic
	Preliminaries
	Syntax and semantics

	Nested Register Automata
	Definition of NRA
	Emptiness of NRA
	Preliminaries
	Proof of decidability

	Decidability of the logic
	Linearisation from LTL A to LTL [k]
	Translation of formulae to NRA

	Summary and Open Questions
	Bibliography

