
Introduction to the Simply Typed Lambda Calculus

Anton Pirogov

October 6, 2014

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 1/32



Table of contents I

Introduction

The Untyped Lambda Calculus

Syntax and evaluation

Working with the Lambda Calculus

Beyond the pure calculus

Adding Types

Motivation

The simply typed lambda calculus

Properties of typing

System F

Type theory, OOP and logic

Conclusion
Anton Pirogov Introduction to the Simply Typed Lambda Calculus 2/32



Why type systems?

Many popular languages do not require tracking types of variables, which

seems rather comfortable. Why should you care about type systems?

I Type checking prevents common and trivial bugs

E.g. JavaScript or PHP: 1000 == "1e3" is true!

⇒ weak + dynamic typing = have fun debugging!

I Working with types – "First think, then code"

⇒ cleaner, better organized results

I Types are never-outdated documentation!

I Type inference⇒ not necesserily verbose

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 3/32



Why type systems?

Many popular languages do not require tracking types of variables, which

seems rather comfortable. Why should you care about type systems?

I Type checking prevents common and trivial bugs

E.g. JavaScript or PHP: 1000 == "1e3" is true!

⇒ weak + dynamic typing = have fun debugging!

I Working with types – "First think, then code"

⇒ cleaner, better organized results

I Types are never-outdated documentation!

I Type inference⇒ not necesserily verbose

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 3/32



Why type systems?

Many popular languages do not require tracking types of variables, which

seems rather comfortable. Why should you care about type systems?

I Type checking prevents common and trivial bugs

E.g. JavaScript or PHP: 1000 == "1e3" is true!

⇒ weak + dynamic typing = have fun debugging!

I Working with types – "First think, then code"

⇒ cleaner, better organized results

I Types are never-outdated documentation!

I Type inference⇒ not necesserily verbose

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 3/32



Why type systems?

Many popular languages do not require tracking types of variables, which

seems rather comfortable. Why should you care about type systems?

I Type checking prevents common and trivial bugs

E.g. JavaScript or PHP: 1000 == "1e3" is true!

⇒ weak + dynamic typing = have fun debugging!

I Working with types – "First think, then code"

⇒ cleaner, better organized results

I Types are never-outdated documentation!

I Type inference⇒ not necesserily verbose

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 3/32



Why type systems?

Many popular languages do not require tracking types of variables, which

seems rather comfortable. Why should you care about type systems?

I Type checking prevents common and trivial bugs

E.g. JavaScript or PHP: 1000 == "1e3" is true!

⇒ weak + dynamic typing = have fun debugging!

I Working with types – "First think, then code"

⇒ cleaner, better organized results

I Types are never-outdated documentation!

I Type inference⇒ not necesserily verbose

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 3/32



Untyped Lambda Calculus

Some facts:

I fundamental formal system for computation

I introduced by Alonzo Church in 1936

I shown to be equivalent to Turing Machines in 1937

I used especially in type theory + PL research

I mother of all functional programming languages

(especially ML and LISP family)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 4/32



Syntax

Definition (Syntax of λ-calculus)

t ::= x variable

λx. t abstraction

t t application

I Abstraction = Function

I We will sometimes use parentheses

I When not, assume λx. . . . = (λx. . . .)

I λx. x y: x is bound, y is free

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 5/32



Syntax

Definition (Syntax of λ-calculus)

t ::= x variable

λx. t abstraction

t t application

I Abstraction = Function

I We will sometimes use parentheses

I When not, assume λx. . . . = (λx. . . .)

I λx. x y: x is bound, y is free

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 5/32



Evaluation

I one abstraction has exactly one parameter

I abstraction + application = redex (reducible expression)

I non-reducible terms = values

I in pure λ-calculus: abstraction is only kind of data

⇒ computations always return other abstractions (only possible value!)

I beta reduction: one step of redex evaluation

(λx. t1) t2 → [x 7→ t2]t1

⇒ function evaluation = term substitution

I We use call-by-value evaluation:

evaluate terms left to right (depth-first),

if remaining term is redex, recursively continue evaluating

I Other evaluation strategies also possible
Anton Pirogov Introduction to the Simply Typed Lambda Calculus 6/32



Evaluation

I one abstraction has exactly one parameter

I abstraction + application = redex (reducible expression)

I non-reducible terms = values

I in pure λ-calculus: abstraction is only kind of data

⇒ computations always return other abstractions (only possible value!)

I beta reduction: one step of redex evaluation

(λx. t1) t2 → [x 7→ t2]t1

⇒ function evaluation = term substitution

I We use call-by-value evaluation:

evaluate terms left to right (depth-first),

if remaining term is redex, recursively continue evaluating

I Other evaluation strategies also possible
Anton Pirogov Introduction to the Simply Typed Lambda Calculus 6/32



Evaluation

I one abstraction has exactly one parameter

I abstraction + application = redex (reducible expression)

I non-reducible terms = values

I in pure λ-calculus: abstraction is only kind of data

⇒ computations always return other abstractions (only possible value!)

I beta reduction: one step of redex evaluation

(λx. t1) t2 → [x 7→ t2]t1

⇒ function evaluation = term substitution

I We use call-by-value evaluation:

evaluate terms left to right (depth-first),

if remaining term is redex, recursively continue evaluating

I Other evaluation strategies also possible
Anton Pirogov Introduction to the Simply Typed Lambda Calculus 6/32



Evaluation

I one abstraction has exactly one parameter

I abstraction + application = redex (reducible expression)

I non-reducible terms = values

I in pure λ-calculus: abstraction is only kind of data

⇒ computations always return other abstractions (only possible value!)

I beta reduction: one step of redex evaluation

(λx. t1) t2 → [x 7→ t2]t1

⇒ function evaluation = term substitution

I We use call-by-value evaluation:

evaluate terms left to right (depth-first),

if remaining term is redex, recursively continue evaluating

I Other evaluation strategies also possible
Anton Pirogov Introduction to the Simply Typed Lambda Calculus 6/32



Naming of variables

What is wrong in the following evaluation?

[x 7→ z](λz.x) = (λz.[x 7→ z]x) = (λz.z)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 7/32



Naming of variables

What is wrong in the following evaluation?

[x 7→ z](λz.x) = (λz.[x 7→ z]x) = (λz.z)

We changed the meaning from a constant function to an identity function!

Two possible solutions:

1. Allow substitution only if bound variable in abstraction not free in

right-hand term of the substitution

2. Rename bound variable to unused name before applying such a

substitution: [x 7→ z](λz.x) = [x 7→ z](λy.x) = (λy.[x 7→ z]x) = (λy.z)

⇒ called alpha-conversion, terms identical modulo names are α-equivalent

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 7/32



Naming of variables

What is wrong in the following evaluation?

[x 7→ z](λz.x) = (λz.[x 7→ z]x) = (λz.z)

We changed the meaning from a constant function to an identity function!

Two possible solutions:

1. Allow substitution only if bound variable in abstraction not free in

right-hand term of the substitution

2. Rename bound variable to unused name before applying such a

substitution: [x 7→ z](λz.x) = [x 7→ z](λy.x) = (λy.[x 7→ z]x) = (λy.z)

⇒ called alpha-conversion, terms identical modulo names are α-equivalent

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 7/32



Naming of variables

What is wrong in the following evaluation?

[x 7→ z](λz.x) = (λz.[x 7→ z]x) = (λz.z)

We changed the meaning from a constant function to an identity function!

Two possible solutions:

1. Allow substitution only if bound variable in abstraction not free in

right-hand term of the substitution

2. Rename bound variable to unused name before applying such a

substitution: [x 7→ z](λz.x) = [x 7→ z](λy.x) = (λy.[x 7→ z]x) = (λy.z)

⇒ called alpha-conversion, terms identical modulo names are α-equivalent

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 7/32



Currying and partial application

(λx. λy. x y) a b→ (λy. a y) b→ a b

I Nested abstractions ‘simulate’ functions with multiple arguments

I Technique called currying, named after Haskell Curry

(but thought to go back to Moses Schönfinkel)

I Inverse action – applying only some arguments to a curried function

before e.g. passing it somewhere else is called partial application

I Here: Successive substitutions [x 7→ a] and [y 7→ b]

= passing first and second argument one after the other

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 8/32



Currying and partial application

(λx. λy. x y) a b→ (λy. a y) b→ a b

I Nested abstractions ‘simulate’ functions with multiple arguments

I Technique called currying, named after Haskell Curry

(but thought to go back to Moses Schönfinkel)

I Inverse action – applying only some arguments to a curried function

before e.g. passing it somewhere else is called partial application

I Here: Successive substitutions [x 7→ a] and [y 7→ b]

= passing first and second argument one after the other

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 8/32



Currying and partial application

(λx. λy. x y) a b→ (λy. a y) b→ a b

I Nested abstractions ‘simulate’ functions with multiple arguments

I Technique called currying, named after Haskell Curry

(but thought to go back to Moses Schönfinkel)

I Inverse action – applying only some arguments to a curried function

before e.g. passing it somewhere else is called partial application

I Here: Successive substitutions [x 7→ a] and [y 7→ b]

= passing first and second argument one after the other

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 8/32



Currying and partial application

(λx. λy. x y) a b→ (λy. a y) b→ a b

I Nested abstractions ‘simulate’ functions with multiple arguments

I Technique called currying, named after Haskell Curry

(but thought to go back to Moses Schönfinkel)

I Inverse action – applying only some arguments to a curried function

before e.g. passing it somewhere else is called partial application

I Here: Successive substitutions [x 7→ a] and [y 7→ b]

= passing first and second argument one after the other

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 8/32



Currying and partial application

(λx. λy. x y) a b→ (λy. a y) b→ a b

I Nested abstractions ‘simulate’ functions with multiple arguments

I Technique called currying, named after Haskell Curry

(but thought to go back to Moses Schönfinkel)

I Inverse action – applying only some arguments to a curried function

before e.g. passing it somewhere else is called partial application

I Here: Successive substitutions [x 7→ a] and [y 7→ b]

= passing first and second argument one after the other

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 8/32



Church booleans

Q: How can we calculate something meaningful, having only abstractions?

A: Find special abstractions we will treat as booleans⇒ Church booleans

tru = λt. λf. t

fls = λt. λf. f

not = λb. b fls tru

and = λb. λc. b c fls

or = λb. λc. b tru c

test = λl. λm. λn. l m n

Problem: test always evaluates both arguments (= if-branches)

Solution: Wrap the arguments in dummy abstractions, unpack afterwards

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 9/32



Church booleans

Q: How can we calculate something meaningful, having only abstractions?

A: Find special abstractions we will treat as booleans⇒ Church booleans

tru = λt. λf. t

fls = λt. λf. f

not = λb. b fls tru

and = λb. λc. b c fls

or = λb. λc. b tru c

test = λl. λm. λn. l m n

Problem: test always evaluates both arguments (= if-branches)

Solution: Wrap the arguments in dummy abstractions, unpack afterwards

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 9/32



Church booleans

Q: How can we calculate something meaningful, having only abstractions?

A: Find special abstractions we will treat as booleans⇒ Church booleans

tru = λt. λf. t

fls = λt. λf. f

not = λb. b fls tru

and = λb. λc. b c fls

or = λb. λc. b tru c

test = λl. λm. λn. l m n

Problem: test always evaluates both arguments (= if-branches)

Solution: Wrap the arguments in dummy abstractions, unpack afterwards

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 9/32



Church booleans

Q: How can we calculate something meaningful, having only abstractions?

A: Find special abstractions we will treat as booleans⇒ Church booleans

tru = λt. λf. t

fls = λt. λf. f

not = λb. b fls tru

and = λb. λc. b c fls

or = λb. λc. b tru c

test = λl. λm. λn. l m n

Problem: test always evaluates both arguments (= if-branches)

Solution: Wrap the arguments in dummy abstractions, unpack afterwards

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 9/32



Church booleans

Q: How can we calculate something meaningful, having only abstractions?

A: Find special abstractions we will treat as booleans⇒ Church booleans

tru = λt. λf. t

fls = λt. λf. f

not = λb. b fls tru

and = λb. λc. b c fls

or = λb. λc. b tru c

test = λl. λm. λn. l m n

Problem: test always evaluates both arguments (= if-branches)

Solution: Wrap the arguments in dummy abstractions, unpack afterwards

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 9/32



Church booleans

Q: How can we calculate something meaningful, having only abstractions?

A: Find special abstractions we will treat as booleans⇒ Church booleans

tru = λt. λf. t

fls = λt. λf. f

not = λb. b fls tru

and = λb. λc. b c fls

or = λb. λc. b tru c

test = λl. λm. λn. l m n

Problem: test always evaluates both arguments (= if-branches)

Solution: Wrap the arguments in dummy abstractions, unpack afterwards

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 9/32



Church booleans

Q: How can we calculate something meaningful, having only abstractions?

A: Find special abstractions we will treat as booleans⇒ Church booleans

tru = λt. λf. t

fls = λt. λf. f

not = λb. b fls tru

and = λb. λc. b c fls

or = λb. λc. b tru c

test = λl. λm. λn. l m n

Problem: test always evaluates both arguments (= if-branches)

Solution: Wrap the arguments in dummy abstractions, unpack afterwards

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 9/32



Church numerals

There is also an encoding for natural numbers, called Church numerals:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

. . .

scc = λn. λs. λz. s (n s z)

plus = λm. λn. λs. λz. m s (n s z)

times = λm. λn. m (plus n) c0

iszro = λm. m (λx. fls) tru

I Subtraction also possible, but more tricky

I With subtraction we also get equality:

eq = λn. λm. and (iszro (minus n m))

(iszro (minus m n))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 10/32



Church numerals

There is also an encoding for natural numbers, called Church numerals:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

. . .

scc = λn. λs. λz. s (n s z)

plus = λm. λn. λs. λz. m s (n s z)

times = λm. λn. m (plus n) c0

iszro = λm. m (λx. fls) tru

I Subtraction also possible, but more tricky

I With subtraction we also get equality:

eq = λn. λm. and (iszro (minus n m))

(iszro (minus m n))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 10/32



Church numerals

There is also an encoding for natural numbers, called Church numerals:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

. . .

scc = λn. λs. λz. s (n s z)

plus = λm. λn. λs. λz. m s (n s z)

times = λm. λn. m (plus n) c0

iszro = λm. m (λx. fls) tru

I Subtraction also possible, but more tricky

I With subtraction we also get equality:

eq = λn. λm. and (iszro (minus n m))

(iszro (minus m n))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 10/32



Church numerals

There is also an encoding for natural numbers, called Church numerals:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

. . .

scc = λn. λs. λz. s (n s z)

plus = λm. λn. λs. λz. m s (n s z)

times = λm. λn. m (plus n) c0

iszro = λm. m (λx. fls) tru

I Subtraction also possible, but more tricky

I With subtraction we also get equality:

eq = λn. λm. and (iszro (minus n m))

(iszro (minus m n))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 10/32



Church numerals

There is also an encoding for natural numbers, called Church numerals:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

. . .

scc = λn. λs. λz. s (n s z)

plus = λm. λn. λs. λz. m s (n s z)

times = λm. λn. m (plus n) c0

iszro = λm. m (λx. fls) tru

I Subtraction also possible, but more tricky

I With subtraction we also get equality:

eq = λn. λm. and (iszro (minus n m))

(iszro (minus m n))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 10/32



Church numerals

There is also an encoding for natural numbers, called Church numerals:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

. . .

scc = λn. λs. λz. s (n s z)

plus = λm. λn. λs. λz. m s (n s z)

times = λm. λn. m (plus n) c0

iszro = λm. m (λx. fls) tru

I Subtraction also possible, but more tricky

I With subtraction we also get equality:

eq = λn. λm. and (iszro (minus n m))

(iszro (minus m n))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 10/32



Church numerals

There is also an encoding for natural numbers, called Church numerals:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

. . .

scc = λn. λs. λz. s (n s z)

plus = λm. λn. λs. λz. m s (n s z)

times = λm. λn. m (plus n) c0

iszro = λm. m (λx. fls) tru

I Subtraction also possible, but more tricky

I With subtraction we also get equality:

eq = λn. λm. and (iszro (minus n m))

(iszro (minus m n))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 10/32



Adding real booleans and numbers

No real programming language uses Church encoded data⇒ inefficient!

Easy to extend syntax to support primitive data types as atomic values:

I Booleans: add true, false, if t then t else t

I Numbers: add 0, succ, pred, iszero

Evaluation:

I if-condition evaluated⇒ replace if-expression by correct branch

I succ + pred form redex⇒ when they meet, remove

I iszero 0 evaluates to true, otherwise false

Easy to convert between Church-encoded and primitive values, e.g.:

realbool = λb. b true false

churchbool = λb. if b then tru else fls

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 11/32



Adding real booleans and numbers

No real programming language uses Church encoded data⇒ inefficient!

Easy to extend syntax to support primitive data types as atomic values:

I Booleans: add true, false, if t then t else t

I Numbers: add 0, succ, pred, iszero

Evaluation:

I if-condition evaluated⇒ replace if-expression by correct branch

I succ + pred form redex⇒ when they meet, remove

I iszero 0 evaluates to true, otherwise false

Easy to convert between Church-encoded and primitive values, e.g.:

realbool = λb. b true false

churchbool = λb. if b then tru else fls

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 11/32



Adding real booleans and numbers

No real programming language uses Church encoded data⇒ inefficient!

Easy to extend syntax to support primitive data types as atomic values:

I Booleans: add true, false, if t then t else t

I Numbers: add 0, succ, pred, iszero

Evaluation:

I if-condition evaluated⇒ replace if-expression by correct branch

I succ + pred form redex⇒ when they meet, remove

I iszero 0 evaluates to true, otherwise false

Easy to convert between Church-encoded and primitive values, e.g.:

realbool = λb. b true false

churchbool = λb. if b then tru else fls

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 11/32



Adding real booleans and numbers

No real programming language uses Church encoded data⇒ inefficient!

Easy to extend syntax to support primitive data types as atomic values:

I Booleans: add true, false, if t then t else t

I Numbers: add 0, succ, pred, iszero

Evaluation:

I if-condition evaluated⇒ replace if-expression by correct branch

I succ + pred form redex⇒ when they meet, remove

I iszero 0 evaluates to true, otherwise false

Easy to convert between Church-encoded and primitive values, e.g.:

realbool = λb. b true false

churchbool = λb. if b then tru else fls

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 11/32



I there are many possible extensions to the pure calculus:

I more primitive types, lists, tuples, recursion (→ looping), . . .

I either as part of formal definition or as syntactic sugar

⇒ convenient notation for constructions that are possible,

but are verbose/ugly/hard to use with base definition

I sugar helps keeping the core language clean and simple

I we do not add more stuff, finally move on to types . . .

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 12/32



Motivation

Q: What about input like if 0 then true else 0 or succ false?

A: Depending on the concrete expression and defined semantics:

I evaluation gets stuck at undefined state (→ runtime-error)

I worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual

evaluation and only accept well-typed input that is playing by the rules!

Solution:

I Assign each function a type of the form T1 → T2

I read: function taking value of type T1, returning value of type T2

I → = type constructor, Tn = type variable

I → is right-associative: A→ B→ C = A→ (B→ C)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 13/32



Motivation

Q: What about input like if 0 then true else 0 or succ false?

A: Depending on the concrete expression and defined semantics:

I evaluation gets stuck at undefined state (→ runtime-error)

I worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual

evaluation and only accept well-typed input that is playing by the rules!

Solution:

I Assign each function a type of the form T1 → T2

I read: function taking value of type T1, returning value of type T2

I → = type constructor, Tn = type variable

I → is right-associative: A→ B→ C = A→ (B→ C)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 13/32



Motivation

Q: What about input like if 0 then true else 0 or succ false?

A: Depending on the concrete expression and defined semantics:

I evaluation gets stuck at undefined state (→ runtime-error)

I worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual

evaluation and only accept well-typed input that is playing by the rules!

Solution:

I Assign each function a type of the form T1 → T2

I read: function taking value of type T1, returning value of type T2

I → = type constructor, Tn = type variable

I → is right-associative: A→ B→ C = A→ (B→ C)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 13/32



Motivation

Q: What about input like if 0 then true else 0 or succ false?

A: Depending on the concrete expression and defined semantics:

I evaluation gets stuck at undefined state (→ runtime-error)

I worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual

evaluation and only accept well-typed input that is playing by the rules!

Solution:

I Assign each function a type of the form T1 → T2

I read: function taking value of type T1, returning value of type T2

I → = type constructor, Tn = type variable

I → is right-associative: A→ B→ C = A→ (B→ C)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 13/32



Motivation

Q: What about input like if 0 then true else 0 or succ false?

A: Depending on the concrete expression and defined semantics:

I evaluation gets stuck at undefined state (→ runtime-error)

I worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual

evaluation and only accept well-typed input that is playing by the rules!

Solution:

I Assign each function a type of the form T1 → T2

I read: function taking value of type T1, returning value of type T2

I → = type constructor, Tn = type variable

I → is right-associative: A→ B→ C = A→ (B→ C)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 13/32



Motivation

Q: What about input like if 0 then true else 0 or succ false?

A: Depending on the concrete expression and defined semantics:

I evaluation gets stuck at undefined state (→ runtime-error)

I worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual

evaluation and only accept well-typed input that is playing by the rules!

Solution:

I Assign each function a type of the form T1 → T2

I read: function taking value of type T1, returning value of type T2

I → = type constructor, Tn = type variable

I → is right-associative: A→ B→ C = A→ (B→ C)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 13/32



Motivation

Q: What about input like if 0 then true else 0 or succ false?

A: Depending on the concrete expression and defined semantics:

I evaluation gets stuck at undefined state (→ runtime-error)

I worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual

evaluation and only accept well-typed input that is playing by the rules!

Solution:

I Assign each function a type of the form T1 → T2

I read: function taking value of type T1, returning value of type T2

I → = type constructor, Tn = type variable

I → is right-associative: A→ B→ C = A→ (B→ C)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 13/32



Syntax

Definition (Syntax of simply typed λ-calculus (λ→))

t ::= x variable

λx: T. t abstraction

t application

I Invented by Church in 1940

I Only superficial difference: every abstraction gets type annotation

I simply typed = only way to construct types is→

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 14/32



We need some rules for correct type annotation. Some new notation first:

I Let Γ be a set of assumptions about types of terms,

e.g. free variables, called typing context

I Γ ` t : T means ‘under given assumptions the term t has the type T’

I Γ can be ∅ ⇒ can be omitted in that case: ` t : T or t : T

I

A
B is a deduction rule, means implication like A⇒ B

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 15/32



We need some rules for correct type annotation. Some new notation first:

I Let Γ be a set of assumptions about types of terms,

e.g. free variables, called typing context

I Γ ` t : T means ‘under given assumptions the term t has the type T’

I Γ can be ∅ ⇒ can be omitted in that case: ` t : T or t : T

I

A
B is a deduction rule, means implication like A⇒ B

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 15/32



We need some rules for correct type annotation. Some new notation first:

I Let Γ be a set of assumptions about types of terms,

e.g. free variables, called typing context

I Γ ` t : T means ‘under given assumptions the term t has the type T’

I Γ can be ∅ ⇒ can be omitted in that case: ` t : T or t : T

I

A
B is a deduction rule, means implication like A⇒ B

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 15/32



We need some rules for correct type annotation. Some new notation first:

I Let Γ be a set of assumptions about types of terms,

e.g. free variables, called typing context

I Γ ` t : T means ‘under given assumptions the term t has the type T’

I Γ can be ∅ ⇒ can be omitted in that case: ` t : T or t : T

I

A
B is a deduction rule, means implication like A⇒ B

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 15/32



Typing rules

Definition (Typing of variables (T-Var))

x : T ∈ Γ
Γ ` x : T

Definition (Typing of abstractions (T-Abs))

Γ,x : T1 ` t2 : T2
Γ ` λx : T1. t2 : T1 → T2

Definition (Typing of applications (T-App))

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 16/32



Typing rules

Definition (Typing of variables (T-Var))

x : T ∈ Γ
Γ ` x : T

Definition (Typing of abstractions (T-Abs))

Γ,x : T1 ` t2 : T2
Γ ` λx : T1. t2 : T1 → T2

Definition (Typing of applications (T-App))

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 16/32



Typing rules

Definition (Typing of variables (T-Var))

x : T ∈ Γ
Γ ` x : T

Definition (Typing of abstractions (T-Abs))

Γ,x : T1 ` t2 : T2
Γ ` λx : T1. t2 : T1 → T2

Definition (Typing of applications (T-App))

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 16/32



Typing rules for booleans and numbers

Definition (T-True, T-False, T-If)

true : Bool false : Bool
Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T

Note that t2 and t3 in the if-expression must have the same type T!

Definition (T-Zero, T-Succ, T-Pred, T-IsZero)

0 : Nat
Γ ` t1 : Nat

Γ ` succ t1 : Nat
Γ ` t1 : Nat

Γ ` pred t1 : Nat
Γ ` t1 : Nat

Γ ` iszero t1 : Bool

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 17/32



Typing rules for booleans and numbers

Definition (T-True, T-False, T-If)

true : Bool false : Bool
Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T

Note that t2 and t3 in the if-expression must have the same type T!

Definition (T-Zero, T-Succ, T-Pred, T-IsZero)

0 : Nat
Γ ` t1 : Nat

Γ ` succ t1 : Nat
Γ ` t1 : Nat

Γ ` pred t1 : Nat
Γ ` t1 : Nat

Γ ` iszero t1 : Bool

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 17/32



Deduction example

Let’s prove

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool

Proof.

f : Bool→ Bool ∈ f : Bool→ Bool

f : Bool→ Bool ` f : Bool→ Bool
T − Var

x : Bool ∈ x : Bool

x : Bool ` x : Bool
T − Var

false : Bool
T − False

x : Bool ` if x then false else x : Bool
T − If

f : Bool→ Bool, x : Bool ` f (if x then false else x) : Bool
T − App

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool
T − Abs

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 18/32



Deduction example

Let’s prove

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool

Proof.

f : Bool→ Bool ∈ f : Bool→ Bool

f : Bool→ Bool ` f : Bool→ Bool
T − Var

x : Bool ∈ x : Bool

x : Bool ` x : Bool
T − Var

false : Bool
T − False

x : Bool ` if x then false else x : Bool
T − If

f : Bool→ Bool, x : Bool ` f (if x then false else x) : Bool
T − App

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool
T − Abs

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 18/32



Deduction example

Let’s prove

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool

Proof.

f : Bool→ Bool ∈ f : Bool→ Bool

f : Bool→ Bool ` f : Bool→ Bool
T − Var

x : Bool ∈ x : Bool

x : Bool ` x : Bool
T − Var

false : Bool
T − False

x : Bool ` if x then false else x : Bool
T − If

f : Bool→ Bool, x : Bool ` f (if x then false else x) : Bool
T − App

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool
T − Abs

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 18/32



Deduction example

Let’s prove

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool

Proof.

f : Bool→ Bool ∈ f : Bool→ Bool

f : Bool→ Bool ` f : Bool→ Bool
T − Var

x : Bool ∈ x : Bool

x : Bool ` x : Bool
T − Var

false : Bool
T − False

x : Bool ` if x then false else x : Bool
T − If

f : Bool→ Bool, x : Bool ` f (if x then false else x) : Bool
T − App

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool
T − Abs

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 18/32



Deduction example

Let’s prove

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool

Proof.

f : Bool→ Bool ∈ f : Bool→ Bool

f : Bool→ Bool ` f : Bool→ Bool
T − Var

x : Bool ∈ x : Bool

x : Bool ` x : Bool
T − Var

false : Bool
T − False

x : Bool ` if x then false else x : Bool
T − If

f : Bool→ Bool, x : Bool ` f (if x then false else x) : Bool
T − App

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool
T − Abs

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 18/32



Deduction example

Let’s prove

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool

Proof.

f : Bool→ Bool ∈ f : Bool→ Bool

f : Bool→ Bool ` f : Bool→ Bool
T − Var

x : Bool ∈ x : Bool

x : Bool ` x : Bool
T − Var

false : Bool
T − False

x : Bool ` if x then false else x : Bool
T − If

f : Bool→ Bool, x : Bool ` f (if x then false else x) : Bool
T − App

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool
T − Abs

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 18/32



Deduction example

Let’s prove

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool

Proof.

f : Bool→ Bool ∈ f : Bool→ Bool

f : Bool→ Bool ` f : Bool→ Bool
T − Var

x : Bool ∈ x : Bool

x : Bool ` x : Bool
T − Var

false : Bool
T − False

x : Bool ` if x then false else x : Bool
T − If

f : Bool→ Bool, x : Bool ` f (if x then false else x) : Bool
T − App

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool
T − Abs

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 18/32



Properties of typing

Two important theorems can be shown for λ→ by structural induction:

Theorem (Progress)
Suppose t is a closed, well-typed term (that is, ` t : T for some T). Then

either t is a value or else there is some t’ with t→ t′.

Theorem (Preservation)

If Γ ` t : T and t→ t′, then Γ ` t′ : T.

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 19/32



Properties of typing

Two important theorems can be shown for λ→ by structural induction:

Theorem (Progress)
Suppose t is a closed, well-typed term (that is, ` t : T for some T). Then

either t is a value or else there is some t’ with t→ t′.

Theorem (Preservation)

If Γ ` t : T and t→ t′, then Γ ` t′ : T.

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 19/32



Properties of typing

Two important theorems can be shown for λ→ by structural induction:

Theorem (Progress)
Suppose t is a closed, well-typed term (that is, ` t : T for some T). Then

either t is a value or else there is some t’ with t→ t′.

Theorem (Preservation)

If Γ ` t : T and t→ t′, then Γ ` t′ : T.

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 19/32



Properties of typing

What does it mean?

I Progress:

Every well-typed term can be reduced to a value

I Preservation:

Every well-typed term evaluates to a well-typed term with the same type

I progress+preservation=type safety

⇒ well-typed terms never get stuck during evaluation!

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 20/32



Properties of typing

I Another property that can be shown:

type erasure does not influence evaluation⇒ Types can be

(and are often!) removed during compilation, if everything is ok

I Reverse action – type reconstruction:

finding a possible type of a term with incomplete type annotations

I if the reconstruction possible, the term is typable, if not:

either invalid term or insufficient information

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 21/32



Properties of typing

I Another property that can be shown:

type erasure does not influence evaluation⇒ Types can be

(and are often!) removed during compilation, if everything is ok

I Reverse action – type reconstruction:

finding a possible type of a term with incomplete type annotations

I if the reconstruction possible, the term is typable, if not:

either invalid term or insufficient information

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 21/32



doubleNat = λf : Nat→ Nat. λx : Nat. f (f x)

doubleBool = λf : Bool→ Bool. λx : Bool. f (f x)

doubleAll = ?

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 22/32



doubleNat = λf : Nat→ Nat. λx : Nat. f (f x)

doubleBool = λf : Bool→ Bool. λx : Bool. f (f x)

doubleAll = ?

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 22/32



doubleNat = λf : Nat→ Nat. λx : Nat. f (f x)

doubleBool = λf : Bool→ Bool. λx : Bool. f (f x)

doubleAll = ?

Problem:

For each type we need to duplicate identical code with other type annotations!

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 22/32



doubleNat = λf : Nat→ Nat. λx : Nat. f (f x)

doubleBool = λf : Bool→ Bool. λx : Bool. f (f x)

doubleAll = ?

Problem:

For each type we need to duplicate identical code with other type annotations!

We want something like Java Generics / C++ Templates

⇒ we need to extend λ→ with parametric polymorphism

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 22/32



doubleNat = λf : Nat→ Nat. λx : Nat. f (f x)

doubleBool = λf : Bool→ Bool. λx : Bool. f (f x)

doubleAll = ?

Problem:

For each type we need to duplicate identical code with other type annotations!

We want something like Java Generics / C++ Templates

⇒ we need to extend λ→ with parametric polymorphism

 System F (Girard, 1972)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 22/32



System F

Definition (Syntax of System F)

t ::= x variable

λx : T. t abstraction

t application

λX. t type abstraction

t[T] type application

uppercase letters = type variables, lowercase letters = terms

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 23/32



System F

I type abstraction/application works similar to normal, but we substitute

type variables: (λX. t12) [T2]→ [X 7→ T2]t12

I before annotated types had to be concrete, now they are abstracted

⇒ we need new types and typing rules to express this

I type abstractions get a universal type of the form ∀X.T

I now we have two different type constructors: → and ∀

⇒ second-order lambda calculus

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 24/32



System F

I type abstraction/application works similar to normal, but we substitute

type variables: (λX. t12) [T2]→ [X 7→ T2]t12

I before annotated types had to be concrete, now they are abstracted

⇒ we need new types and typing rules to express this

I type abstractions get a universal type of the form ∀X.T

I now we have two different type constructors: → and ∀

⇒ second-order lambda calculus

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 24/32



System F

I type abstraction/application works similar to normal, but we substitute

type variables: (λX. t12) [T2]→ [X 7→ T2]t12

I before annotated types had to be concrete, now they are abstracted

⇒ we need new types and typing rules to express this

I type abstractions get a universal type of the form ∀X.T

I now we have two different type constructors: → and ∀

⇒ second-order lambda calculus

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 24/32



Rules for universal types

Definition (Typing of type abstractions (T-TAbs))

Γ,X ` t2 : T2
Γ ` λX. t2 : ∀X.T2

Definition (Typing of type applications (T-TApp))

Γ ` t1 : ∀X.T12
Γ ` t1 [T2] : [X 7→ T2]T12

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 25/32



Rules for universal types

Definition (Typing of type abstractions (T-TAbs))

Γ,X ` t2 : T2
Γ ` λX. t2 : ∀X.T2

Definition (Typing of type applications (T-TApp))

Γ ` t1 : ∀X.T12
Γ ` t1 [T2] : [X 7→ T2]T12

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 25/32



Examples

id = λX. λx : X. x type ∀X.X→ X

idNat = id [Nat] = λx : Nat. x type Nat→ Nat

double =λX. λf : X→ X. λx : X. f (f x)

type ∀X.(X→ X)→ X→ X

dblBool = double [Bool]

= λf : Bool→ Bool. λx : Bool. f (f x)

type (Bool→ Bool)→ Bool→ Bool

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 26/32



Examples

id = λX. λx : X. x type ∀X.X→ X

idNat = id [Nat] = λx : Nat. x type Nat→ Nat

double =λX. λf : X→ X. λx : X. f (f x)

type ∀X.(X→ X)→ X→ X

dblBool = double [Bool]

= λf : Bool→ Bool. λx : Bool. f (f x)

type (Bool→ Bool)→ Bool→ Bool

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 26/32



Examples

id = λX. λx : X. x type ∀X.X→ X

idNat = id [Nat] = λx : Nat. x type Nat→ Nat

double =λX. λf : X→ X. λx : X. f (f x)

type ∀X.(X→ X)→ X→ X

dblBool = double [Bool]

= λf : Bool→ Bool. λx : Bool. f (f x)

type (Bool→ Bool)→ Bool→ Bool

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 26/32



Examples

id = λX. λx : X. x type ∀X.X→ X

idNat = id [Nat] = λx : Nat. x type Nat→ Nat

double =λX. λf : X→ X. λx : X. f (f x)

type ∀X.(X→ X)→ X→ X

dblBool = double [Bool]

= λf : Bool→ Bool. λx : Bool. f (f x)

type (Bool→ Bool)→ Bool→ Bool

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 26/32



Examples

quad = λX. double [X→ X] (double [X]) type ∀X.(X→ X)→ X→ X

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 27/32



Examples

quad = λX. double [X→ X] (double [X]) type ∀X.(X→ X)→ X→ X

Wait, what?!

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 27/32



Examples

quad = λX. double [X→ X] (double [X]) type ∀X.(X→ X)→ X→ X

Wait, what?! Yes, it is correct. Let’s evaluate it:

quad = λX. double [X→ X] (double [X])

= λX. (λf : (X→ X)→ X→ X. λa : X→ X. f (f a)) (double [X])

= λX. λa : X→ X. double [X] (double [X] a)

= λX. λa : X→ X. (λg : X→ X. λb : X. g (g b)) (double [X] a)

= λX. λa : X→ X. λb : X. double [X] a (double [X] a b)

= λX. λa : X→ X. λb : X. a (a (a (a b)))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 27/32



Examples

quad = λX. double [X→ X] (double [X]) type ∀X.(X→ X)→ X→ X

Wait, what?! Yes, it is correct. Let’s evaluate it:

quad = λX. double [X→ X] (double [X])

= λX. (λf : (X→ X)→ X→ X. λa : X→ X. f (f a)) (double [X])

= λX. λa : X→ X. double [X] (double [X] a)

= λX. λa : X→ X. (λg : X→ X. λb : X. g (g b)) (double [X] a)

= λX. λa : X→ X. λb : X. double [X] a (double [X] a b)

= λX. λa : X→ X. λb : X. a (a (a (a b)))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 27/32



Examples

quad = λX. double [X→ X] (double [X]) type ∀X.(X→ X)→ X→ X

Wait, what?! Yes, it is correct. Let’s evaluate it:

quad = λX. double [X→ X] (double [X])

= λX. (λf : (X→ X)→ X→ X. λa : X→ X. f (f a)) (double [X])

= λX. λa : X→ X. double [X] (double [X] a)

= λX. λa : X→ X. (λg : X→ X. λb : X. g (g b)) (double [X] a)

= λX. λa : X→ X. λb : X. double [X] a (double [X] a b)

= λX. λa : X→ X. λb : X. a (a (a (a b)))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 27/32



Examples

quad = λX. double [X→ X] (double [X]) type ∀X.(X→ X)→ X→ X

Wait, what?! Yes, it is correct. Let’s evaluate it:

quad = λX. double [X→ X] (double [X])

= λX. (λf : (X→ X)→ X→ X. λa : X→ X. f (f a)) (double [X])

= λX. λa : X→ X. double [X] (double [X] a)

= λX. λa : X→ X. (λg : X→ X. λb : X. g (g b)) (double [X] a)

= λX. λa : X→ X. λb : X. double [X] a (double [X] a b)

= λX. λa : X→ X. λb : X. a (a (a (a b)))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 27/32



Examples

quad = λX. double [X→ X] (double [X]) type ∀X.(X→ X)→ X→ X

Wait, what?! Yes, it is correct. Let’s evaluate it:

quad = λX. double [X→ X] (double [X])

= λX. (λf : (X→ X)→ X→ X. λa : X→ X. f (f a)) (double [X])

= λX. λa : X→ X. double [X] (double [X] a)

= λX. λa : X→ X. (λg : X→ X. λb : X. g (g b)) (double [X] a)

= λX. λa : X→ X. λb : X. double [X] a (double [X] a b)

= λX. λa : X→ X. λb : X. a (a (a (a b)))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 27/32



Examples

quad = λX. double [X→ X] (double [X]) type ∀X.(X→ X)→ X→ X

Wait, what?! Yes, it is correct. Let’s evaluate it:

quad = λX. double [X→ X] (double [X])

= λX. (λf : (X→ X)→ X→ X. λa : X→ X. f (f a)) (double [X])

= λX. λa : X→ X. double [X] (double [X] a)

= λX. λa : X→ X. (λg : X→ X. λb : X. g (g b)) (double [X] a)

= λX. λa : X→ X. λb : X. double [X] a (double [X] a b)

= λX. λa : X→ X. λb : X. a (a (a (a b)))

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 27/32



System F

I As you see, parametric polymorphism is very expressive

I Haskell programs desugar to an ext. System F form during compilation

I preservation and progress theorems still hold in System F⇒ type-safe

I type reconstruction undecidable⇒ not all annotations can be omitted

I Languages based on System F have artificial restrictions on valid terms

to keep partial reconstruction possible

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 28/32



System F

I As you see, parametric polymorphism is very expressive

I Haskell programs desugar to an ext. System F form during compilation

I preservation and progress theorems still hold in System F⇒ type-safe

I type reconstruction undecidable⇒ not all annotations can be omitted

I Languages based on System F have artificial restrictions on valid terms

to keep partial reconstruction possible

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 28/32



Type theory and OOP

I Important branch: λ-calculi with subtyping (Reynolds, Cardelli (1980’s))

I Theoretical foundation of inheritance in OOP

I Extension: Subtyping relation with new set of deduction rules

I Says which types can be treated as more general types

⇒ Functions can ignore specialisation and work on more inputs

I Efforts to prove type safety of Java (first by Drossopoulou, Eisenbach

and Khurshid (1999))

⇒ using calculi with subtyping which resemble Java subsets

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 29/32



Type theory and OOP

I Important branch: λ-calculi with subtyping (Reynolds, Cardelli (1980’s))

I Theoretical foundation of inheritance in OOP

I Extension: Subtyping relation with new set of deduction rules

I Says which types can be treated as more general types

⇒ Functions can ignore specialisation and work on more inputs

I Efforts to prove type safety of Java (first by Drossopoulou, Eisenbach

and Khurshid (1999))

⇒ using calculi with subtyping which resemble Java subsets

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 29/32



Type theory and OOP

I Important branch: λ-calculi with subtyping (Reynolds, Cardelli (1980’s))

I Theoretical foundation of inheritance in OOP

I Extension: Subtyping relation with new set of deduction rules

I Says which types can be treated as more general types

⇒ Functions can ignore specialisation and work on more inputs

I Efforts to prove type safety of Java (first by Drossopoulou, Eisenbach

and Khurshid (1999))

⇒ using calculi with subtyping which resemble Java subsets

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 29/32



Type theory and logic

I Curry-Howard-Correspondence: (Curry (1958), Howard (1980))

isomorphism: types ≈ propositions, terms ≈ proofs!

⇒ Connection between constructive logic and computer science

I E.g. used for tools like Coq – interactive theorem prover

I Helps the user formulating assertions and finding proofs

I proof-checking = type-checking the program!

I Such tools often based on calculi with dependent types

⇒ types like Array n→ Array (n + 1) possible

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 30/32



Type theory and logic

I Curry-Howard-Correspondence: (Curry (1958), Howard (1980))

isomorphism: types ≈ propositions, terms ≈ proofs!

⇒ Connection between constructive logic and computer science

I E.g. used for tools like Coq – interactive theorem prover

I Helps the user formulating assertions and finding proofs

I proof-checking = type-checking the program!

I Such tools often based on calculi with dependent types

⇒ types like Array n→ Array (n + 1) possible

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 30/32



Type theory and logic

I Curry-Howard-Correspondence: (Curry (1958), Howard (1980))

isomorphism: types ≈ propositions, terms ≈ proofs!

⇒ Connection between constructive logic and computer science

I E.g. used for tools like Coq – interactive theorem prover

I Helps the user formulating assertions and finding proofs

I proof-checking = type-checking the program!

I Such tools often based on calculi with dependent types

⇒ types like Array n→ Array (n + 1) possible

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 30/32



Conclusion

Q: What do we get using type systems in the context of software verification?

A:

I our program will compile and execute (catch syntax errors)

I our functions will take and return the intended data types

(catch violations of our mental model/the designed API)

I we can control which functions can do which effects,

prevent specific values to be taken out of context

(e.g. the Monad typeclass in Haskell)

I With dependent types: prove almost arbitrary properties,

e.g. check for array-out-of-bound errors on compile time or

even prove that a sorting algorithm sorts correctly

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 31/32



Conclusion

Q: What do we get using type systems in the context of software verification?

A:

I our program will compile and execute (catch syntax errors)

I our functions will take and return the intended data types

(catch violations of our mental model/the designed API)

I we can control which functions can do which effects,

prevent specific values to be taken out of context

(e.g. the Monad typeclass in Haskell)

I With dependent types: prove almost arbitrary properties,

e.g. check for array-out-of-bound errors on compile time or

even prove that a sorting algorithm sorts correctly

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 31/32



Conclusion

Q: What do we get using type systems in the context of software verification?

A:

I our program will compile and execute (catch syntax errors)

I our functions will take and return the intended data types

(catch violations of our mental model/the designed API)

I we can control which functions can do which effects,

prevent specific values to be taken out of context

(e.g. the Monad typeclass in Haskell)

I With dependent types: prove almost arbitrary properties,

e.g. check for array-out-of-bound errors on compile time or

even prove that a sorting algorithm sorts correctly

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 31/32



Conclusion

Q: What do we get using type systems in the context of software verification?

A:

I our program will compile and execute (catch syntax errors)

I our functions will take and return the intended data types

(catch violations of our mental model/the designed API)

I we can control which functions can do which effects,

prevent specific values to be taken out of context

(e.g. the Monad typeclass in Haskell)

I With dependent types: prove almost arbitrary properties,

e.g. check for array-out-of-bound errors on compile time or

even prove that a sorting algorithm sorts correctly

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 31/32



Conclusion

Q: What do we get using type systems in the context of software verification?

A:

I our program will compile and execute (catch syntax errors)

I our functions will take and return the intended data types

(catch violations of our mental model/the designed API)

I we can control which functions can do which effects,

prevent specific values to be taken out of context

(e.g. the Monad typeclass in Haskell)

I With dependent types: prove almost arbitrary properties,

e.g. check for array-out-of-bound errors on compile time or

even prove that a sorting algorithm sorts correctly

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 31/32



Conclusion

I more powerful type systems require more work by the developer

I a clear model of the types in an application is necessery

I types are also a form of formal specification –

as usual, it is balance between more safety and more additional work

I λ-calculi are an important model to prove properties and develop new

algorithms and abstractions

I results can be and are transferred to real-world programming languages

⇒ developers profit from better, safer and more expressive tools :)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 32/32



Conclusion

I more powerful type systems require more work by the developer

I a clear model of the types in an application is necessery

I types are also a form of formal specification –

as usual, it is balance between more safety and more additional work

I λ-calculi are an important model to prove properties and develop new

algorithms and abstractions

I results can be and are transferred to real-world programming languages

⇒ developers profit from better, safer and more expressive tools :)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 32/32



Conclusion

I more powerful type systems require more work by the developer

I a clear model of the types in an application is necessery

I types are also a form of formal specification –

as usual, it is balance between more safety and more additional work

I λ-calculi are an important model to prove properties and develop new

algorithms and abstractions

I results can be and are transferred to real-world programming languages

⇒ developers profit from better, safer and more expressive tools :)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 32/32



Benjamin C. Pierce. Types and Programming Languages,

MIT Press, 2002

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 32/32



A. Church, An unsolvable problem of elementary number theory,

American Journal of Mathematics, Volume 58, No. 2. (April 1936), pp.

345-363.

A. Church, A Formulation of the Simple Theory of Types, Journal of

Symbolic Logic, Volume 5 (1940).

A. M. Turing, Computability and λ-Definability, The Journal of Symbolic

Logic, Vol. 2, No. 4. (Dec., 1937), pp. 153-163.

H. Curry, R. Feys Combinatory Logic Vol. I, Amsterdam, North-Holland

(1958)

W. A. Howard The formulae-as-types notion of construction in Essays on

Combinatory Logic, Lambda Calculus and Formalism, Boston, MA (Sep.

1980), pp. 479-490

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 32/32



John C. Reynolds Definitional Interpreters for Higher-Order

Programming Languages, Higher-Order and Symbolic Computation 11

(1998)

J. Girard Interprétation fonctionnelle et élimination des coupures de

l’arithmétique d’ordre supérieur, Université Paris (1974)

John C. Reynolds Using category theory to design implicit conversions

and generic operators, Lecture Notes in Computer Science vol. 94,

Springer-Verlag (1980)

L. Cardelli A semantics of multiple inheritance, Lecture Notes in

Computer Science vol. 173, pp. 51-67, Springer-Verlag (1984)

S. Drossopoulou, S. Eisenbach, S. Khurshid Is the Java Type System

Sound?, Theory and Practice of Object Systems (1999)

Anton Pirogov Introduction to the Simply Typed Lambda Calculus 32/32


	Introduction
	The Untyped Lambda Calculus
	Syntax and evaluation
	Working with the Lambda Calculus
	Beyond the pure calculus

	Adding Types
	Motivation
	The simply typed lambda calculus
	Properties of typing
	System F
	Type theory, OOP and logic

	Conclusion

