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Why type systems?

Many popular languages do not require tracking types of variables, which

seems rather comfortable. Why should you care about type systems?

I Type checking prevents common and trivial bugs

E.g. JavaScript or PHP: 1000 == "1e3" is true!

⇒ weak + dynamic typing = have fun debugging!

I Working with types – "First think, then code"

⇒ cleaner, better organized results

I Types are never-outdated documentation!

I Type inference⇒ not necesserily verbose
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Untyped Lambda Calculus

Some facts:

I fundamental formal system for computation

I introduced by Alonzo Church in 1936

I shown to be equivalent to Turing Machines in 1937

I used especially in type theory + PL research

I mother of all functional programming languages

(especially ML and LISP family)
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Syntax

Definition (Syntax of λ-calculus)

t ::= x variable

λx. t abstraction

t t application

I Abstraction = Function

I We will sometimes use parentheses

I When not, assume λx. . . . = (λx. . . .)

I λx. x y: x is bound, y is free
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Evaluation

I one abstraction has exactly one parameter

I abstraction + application = redex (reducible expression)

I non-reducible terms = values

I in pure λ-calculus: abstraction is only kind of data

⇒ computations always return other abstractions (only possible value!)

I beta reduction: one step of redex evaluation

(λx. t1) t2 → [x 7→ t2]t1

⇒ function evaluation = term substitution

I We use call-by-value evaluation:

evaluate terms left to right (depth-first),

if remaining term is redex, recursively continue evaluating

I Other evaluation strategies also possible
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Naming of variables

What is wrong in the following evaluation?

[x 7→ z](λz.x) = (λz.[x 7→ z]x) = (λz.z)
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Naming of variables

What is wrong in the following evaluation?

[x 7→ z](λz.x) = (λz.[x 7→ z]x) = (λz.z)

We changed the meaning from a constant function to an identity function!

Two possible solutions:

1. Allow substitution only if bound variable in abstraction not free in

right-hand term of the substitution

2. Rename bound variable to unused name before applying such a

substitution: [x 7→ z](λz.x) = [x 7→ z](λy.x) = (λy.[x 7→ z]x) = (λy.z)

⇒ called alpha-conversion, terms identical modulo names are α-equivalent
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Currying and partial application

(λx. λy. x y) a b→ (λy. a y) b→ a b

I Nested abstractions ‘simulate’ functions with multiple arguments

I Technique called currying, named after Haskell Curry

(but thought to go back to Moses Schönfinkel)

I Inverse action – applying only some arguments to a curried function

before e.g. passing it somewhere else is called partial application

I Here: Successive substitutions [x 7→ a] and [y 7→ b]

= passing first and second argument one after the other
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Church booleans

Q: How can we calculate something meaningful, having only abstractions?

A: Find special abstractions we will treat as booleans⇒ Church booleans

tru = λt. λf. t

fls = λt. λf. f

not = λb. b fls tru

and = λb. λc. b c fls

or = λb. λc. b tru c

test = λl. λm. λn. l m n

Problem: test always evaluates both arguments (= if-branches)

Solution: Wrap the arguments in dummy abstractions, unpack afterwards
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Church numerals

There is also an encoding for natural numbers, called Church numerals:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

. . .

scc = λn. λs. λz. s (n s z)

plus = λm. λn. λs. λz. m s (n s z)

times = λm. λn. m (plus n) c0

iszro = λm. m (λx. fls) tru

I Subtraction also possible, but more tricky

I With subtraction we also get equality:

eq = λn. λm. and (iszro (minus n m))

(iszro (minus m n))
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Adding real booleans and numbers

No real programming language uses Church encoded data⇒ inefficient!

Easy to extend syntax to support primitive data types as atomic values:

I Booleans: add true, false, if t then t else t

I Numbers: add 0, succ, pred, iszero

Evaluation:

I if-condition evaluated⇒ replace if-expression by correct branch

I succ + pred form redex⇒ when they meet, remove

I iszero 0 evaluates to true, otherwise false

Easy to convert between Church-encoded and primitive values, e.g.:

realbool = λb. b true false

churchbool = λb. if b then tru else fls
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I there are many possible extensions to the pure calculus:

I more primitive types, lists, tuples, recursion (→ looping), . . .

I either as part of formal definition or as syntactic sugar

⇒ convenient notation for constructions that are possible,

but are verbose/ugly/hard to use with base definition

I sugar helps keeping the core language clean and simple

I we do not add more stuff, finally move on to types . . .
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Motivation

Q: What about input like if 0 then true else 0 or succ false?

A: Depending on the concrete expression and defined semantics:

I evaluation gets stuck at undefined state (→ runtime-error)

I worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual

evaluation and only accept well-typed input that is playing by the rules!

Solution:

I Assign each function a type of the form T1 → T2

I read: function taking value of type T1, returning value of type T2

I → = type constructor, Tn = type variable

I → is right-associative: A→ B→ C = A→ (B→ C)
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Syntax

Definition (Syntax of simply typed λ-calculus (λ→))

t ::= x variable

λx: T. t abstraction

t application

I Invented by Church in 1940

I Only superficial difference: every abstraction gets type annotation

I simply typed = only way to construct types is→
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We need some rules for correct type annotation. Some new notation first:

I Let Γ be a set of assumptions about types of terms,

e.g. free variables, called typing context

I Γ ` t : T means ‘under given assumptions the term t has the type T’

I Γ can be ∅ ⇒ can be omitted in that case: ` t : T or t : T

I

A
B is a deduction rule, means implication like A⇒ B
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Typing rules

Definition (Typing of variables (T-Var))

x : T ∈ Γ
Γ ` x : T

Definition (Typing of abstractions (T-Abs))

Γ,x : T1 ` t2 : T2
Γ ` λx : T1. t2 : T1 → T2

Definition (Typing of applications (T-App))

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12
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Typing rules for booleans and numbers

Definition (T-True, T-False, T-If)

true : Bool false : Bool
Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T

Note that t2 and t3 in the if-expression must have the same type T!

Definition (T-Zero, T-Succ, T-Pred, T-IsZero)

0 : Nat
Γ ` t1 : Nat

Γ ` succ t1 : Nat
Γ ` t1 : Nat

Γ ` pred t1 : Nat
Γ ` t1 : Nat

Γ ` iszero t1 : Bool
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Deduction example

Let’s prove

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool

Proof.

f : Bool→ Bool ∈ f : Bool→ Bool

f : Bool→ Bool ` f : Bool→ Bool
T − Var

x : Bool ∈ x : Bool

x : Bool ` x : Bool
T − Var

false : Bool
T − False

x : Bool ` if x then false else x : Bool
T − If

f : Bool→ Bool, x : Bool ` f (if x then false else x) : Bool
T − App

f : Bool→ Bool ` λx : Bool. f (if x then false else x) : Bool→ Bool
T − Abs
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Properties of typing

Two important theorems can be shown for λ→ by structural induction:

Theorem (Progress)
Suppose t is a closed, well-typed term (that is, ` t : T for some T). Then

either t is a value or else there is some t’ with t→ t′.

Theorem (Preservation)

If Γ ` t : T and t→ t′, then Γ ` t′ : T.
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Properties of typing

What does it mean?

I Progress:

Every well-typed term can be reduced to a value

I Preservation:

Every well-typed term evaluates to a well-typed term with the same type

I progress+preservation=type safety

⇒ well-typed terms never get stuck during evaluation!
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Properties of typing

I Another property that can be shown:

type erasure does not influence evaluation⇒ Types can be

(and are often!) removed during compilation, if everything is ok

I Reverse action – type reconstruction:

finding a possible type of a term with incomplete type annotations

I if the reconstruction possible, the term is typable, if not:

either invalid term or insufficient information
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doubleNat = λf : Nat→ Nat. λx : Nat. f (f x)

doubleBool = λf : Bool→ Bool. λx : Bool. f (f x)

doubleAll = ?
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doubleNat = λf : Nat→ Nat. λx : Nat. f (f x)

doubleBool = λf : Bool→ Bool. λx : Bool. f (f x)

doubleAll = ?

Problem:

For each type we need to duplicate identical code with other type annotations!
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We want something like Java Generics / C++ Templates

⇒ we need to extend λ→ with parametric polymorphism
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doubleBool = λf : Bool→ Bool. λx : Bool. f (f x)

doubleAll = ?

Problem:

For each type we need to duplicate identical code with other type annotations!

We want something like Java Generics / C++ Templates

⇒ we need to extend λ→ with parametric polymorphism

 System F (Girard, 1972)
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System F

Definition (Syntax of System F)

t ::= x variable

λx : T. t abstraction

t application

λX. t type abstraction

t[T] type application

uppercase letters = type variables, lowercase letters = terms
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System F

I type abstraction/application works similar to normal, but we substitute

type variables: (λX. t12) [T2]→ [X 7→ T2]t12

I before annotated types had to be concrete, now they are abstracted

⇒ we need new types and typing rules to express this

I type abstractions get a universal type of the form ∀X.T

I now we have two different type constructors: → and ∀

⇒ second-order lambda calculus
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Rules for universal types

Definition (Typing of type abstractions (T-TAbs))

Γ,X ` t2 : T2
Γ ` λX. t2 : ∀X.T2

Definition (Typing of type applications (T-TApp))

Γ ` t1 : ∀X.T12
Γ ` t1 [T2] : [X 7→ T2]T12
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Examples

id = λX. λx : X. x type ∀X.X→ X

idNat = id [Nat] = λx : Nat. x type Nat→ Nat

double =λX. λf : X→ X. λx : X. f (f x)

type ∀X.(X→ X)→ X→ X

dblBool = double [Bool]

= λf : Bool→ Bool. λx : Bool. f (f x)

type (Bool→ Bool)→ Bool→ Bool
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Examples

quad = λX. double [X→ X] (double [X]) type ∀X.(X→ X)→ X→ X
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System F

I As you see, parametric polymorphism is very expressive

I Haskell programs desugar to an ext. System F form during compilation

I preservation and progress theorems still hold in System F⇒ type-safe

I type reconstruction undecidable⇒ not all annotations can be omitted

I Languages based on System F have artificial restrictions on valid terms

to keep partial reconstruction possible
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Type theory and OOP

I Important branch: λ-calculi with subtyping (Reynolds, Cardelli (1980’s))

I Theoretical foundation of inheritance in OOP

I Extension: Subtyping relation with new set of deduction rules

I Says which types can be treated as more general types

⇒ Functions can ignore specialisation and work on more inputs

I Efforts to prove type safety of Java (first by Drossopoulou, Eisenbach

and Khurshid (1999))

⇒ using calculi with subtyping which resemble Java subsets
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Type theory and logic

I Curry-Howard-Correspondence: (Curry (1958), Howard (1980))

isomorphism: types ≈ propositions, terms ≈ proofs!

⇒ Connection between constructive logic and computer science

I E.g. used for tools like Coq – interactive theorem prover

I Helps the user formulating assertions and finding proofs

I proof-checking = type-checking the program!

I Such tools often based on calculi with dependent types

⇒ types like Array n→ Array (n + 1) possible
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Conclusion

Q: What do we get using type systems in the context of software verification?

A:

I our program will compile and execute (catch syntax errors)

I our functions will take and return the intended data types

(catch violations of our mental model/the designed API)

I we can control which functions can do which effects,

prevent specific values to be taken out of context

(e.g. the Monad typeclass in Haskell)

I With dependent types: prove almost arbitrary properties,

e.g. check for array-out-of-bound errors on compile time or

even prove that a sorting algorithm sorts correctly
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Conclusion

I more powerful type systems require more work by the developer

I a clear model of the types in an application is necessery

I types are also a form of formal specification –

as usual, it is balance between more safety and more additional work

I λ-calculi are an important model to prove properties and develop new

algorithms and abstractions

I results can be and are transferred to real-world programming languages

⇒ developers profit from better, safer and more expressive tools :)
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