

Introduction to the Simply Typed Lambda Calculus

Anton Pirogov

October 6, 2014

Table of contents I

Introduction

The Untyped Lambda Calculus

Syntax and evaluation

Working with the Lambda Calculus

Beyond the pure calculus

Adding Types

Motivation

The simply typed lambda calculus

Properties of typing

System F

Type theory, OOP and logic

Conclusion

IS

- Type checking prevents common and trivial bugs
 E.g. JavaScript or PHP: 1000 == "le3" is true!
 weak + dynamic typing = have fun debugging!
- Working with types "First think, then code"
 ⇒ cleaner, better organized results
- Types are never-outdated documentation!
- ► Type inference ⇒ not necesserily verbose

- Type checking prevents common and trivial bugs E.g. JavaScript or PHP: 1000 == "1e3" is true!
 - \Rightarrow weak + dynamic typing = have fun debugging!
- Working with types "First think, then code"
 ⇒ cleaner, better organized results
- Types are never-outdated documentation!
- ► Type inference ⇒ not necesserily verbose

- Type checking prevents common and trivial bugs E.g. JavaScript or PHP: 1000 == "le3" is true!
 - ⇒ weak + dynamic typing = have fun debugging!
- ► Working with types "First think, then code" ⇒ cleaner, better organized results
- Types are never-outdated documentation!
- ► Type inference ⇒ not necesserily verbose

- Type checking prevents common and trivial bugs E.g. JavaScript or PHP: 1000 == "le3" is true!
 - \Rightarrow weak + dynamic typing = have fun debugging!
- Working with types "First think, then code"
 - \Rightarrow cleaner, better organized results
- Types are never-outdated documentation!
- ► Type inference ⇒ not necesserily verbose

- Type checking prevents common and trivial bugs E.g. JavaScript or PHP: 1000 == "le3" is true!
 - ⇒ weak + dynamic typing = have fun debugging!
- Working with types "First think, then code"
 - \Rightarrow cleaner, better organized results
- Types are never-outdated documentation!
- Type inference \Rightarrow not necesserily verbose

Untyped Lambda Calculus

Some facts:

- fundamental formal system for computation
- introduced by Alonzo Church in 1936
- shown to be equivalent to Turing Machines in 1937
- used especially in type theory + PL research
- mother of all functional programming languages (especially ML and LISP family)

Syntax

Definition (Syntax of λ -calculus)

t

:= x	variable
λ x.t	abstraction
tt	application

- Abstraction = Function
- We will sometimes use parentheses
- When not, assume $\lambda x. \ldots = (\lambda x. \ldots)$
- $\lambda x. x y: x$ is bound, y is free

Syntax

Definition (Syntax of λ -calculus)

t

::= x	variable
λ x.t	abstraction
tt	application

- Abstraction = Function
- We will sometimes use parentheses
- When not, assume $\lambda x. \ldots = (\lambda x. \ldots)$
- $\lambda x. x y: x$ is bound, y is free

- one abstraction has exactly one parameter
- abstraction + application = redex (reducible expression)
- non-reducible terms = values
- in pure λ -calculus: abstraction is only kind of data
 - \Rightarrow computations always return other abstractions (only possible value!)
- beta reduction: one step of redex evaluation

 $(\lambda x. t_1) t_2 \rightarrow [x \mapsto t_2]t_1$

 \Rightarrow function evaluation = term substitution

▶ We use *call-by-value* evaluation:

evaluate terms left to right (depth-first),

if remaining term is redex, recursively continue evaluating

- one abstraction has exactly one parameter
- abstraction + application = redex (reducible expression)
- non-reducible terms = values
- in pure λ -calculus: abstraction is only kind of data
 - ⇒ computations always return other abstractions (only possible value!)
- beta reduction: one step of redex evaluation
 - $(\lambda \mathbf{x}. \mathbf{t}_1) \mathbf{t}_2 \rightarrow [\mathbf{x} \mapsto \mathbf{t}_2] \mathbf{t}_1$
 - \Rightarrow function evaluation = term substitution
- ▶ We use *call-by-value* evaluation:

evaluate terms left to right (depth-first),

if remaining term is redex, recursively continue evaluating

- one abstraction has exactly one parameter
- abstraction + application = redex (reducible expression)
- non-reducible terms = values
- in pure λ -calculus: abstraction is only kind of data
 - \Rightarrow computations always return other abstractions (only possible value!)
- beta reduction: one step of redex evaluation

 $(\lambda x. t_1) t_2 \rightarrow [x \mapsto t_2]t_1$

- \Rightarrow function evaluation = term substitution
- ▶ We use *call-by-value* evaluation:

evaluate terms left to right (depth-first),

if remaining term is redex, recursively continue evaluating

- one abstraction has exactly one parameter
- abstraction + application = redex (reducible expression)
- non-reducible terms = values
- in pure λ -calculus: abstraction is only kind of data

 \Rightarrow computations always return other abstractions (only possible value!)

beta reduction: one step of redex evaluation

 $(\lambda x. t_1) t_2 \rightarrow [x \mapsto t_2] t_1$

 \Rightarrow function evaluation = term substitution

▶ We use *call-by-value* evaluation:

evaluate terms left to right (depth-first),

if remaining term is redex, recursively continue evaluating

What is wrong in the following evaluation?

$$[x \mapsto z](\lambda z.x) = (\lambda z.[x \mapsto z]x) = (\lambda z.z)$$

What is wrong in the following evaluation?

$$[\mathbf{x} \mapsto \mathbf{z}](\lambda \mathbf{z}.\mathbf{x}) = (\lambda \mathbf{z}.[\mathbf{x} \mapsto \mathbf{z}]\mathbf{x}) = (\lambda \mathbf{z}.\mathbf{z})$$

We changed the meaning from a constant function to an identity function! Two possible solutions:

- 1. Allow substitution only if bound variable in abstraction not free in right-hand term of the substitution
- Rename bound variable to unused name before applying such a substitution: [x → z](λz.x) = [x → z](λy.x) = (λy.[x → z]x) = (λy.z
- \Rightarrow called *alpha-conversion*, terms identical modulo names are lpha-equivalent

What is wrong in the following evaluation?

$$[x \mapsto z](\lambda z.x) = (\lambda z.[x \mapsto z]x) = (\lambda z.z)$$

We changed the meaning from a constant function to an identity function! Two possible solutions:

- 1. Allow substitution only if bound variable in abstraction not free in right-hand term of the substitution
- 2. Rename bound variable to unused name before applying such a substitution: $[x \mapsto z](\lambda z.x) = [x \mapsto z](\lambda y.x) = (\lambda y.z) = (\lambda y.z)$

 \Rightarrow called *alpha-conversion*, terms identical modulo names are lpha-equivalent

What is wrong in the following evaluation?

$$[x \mapsto z](\lambda z.x) = (\lambda z.[x \mapsto z]x) = (\lambda z.z)$$

We changed the meaning from a constant function to an identity function! Two possible solutions:

- 1. Allow substitution only if bound variable in abstraction not free in right-hand term of the substitution
- 2. Rename bound variable to unused name before applying such a substitution: $[x \mapsto z](\lambda z.x) = [x \mapsto z](\lambda y.x) = (\lambda y.z) = (\lambda y.z)$
- \Rightarrow called *alpha-conversion*, terms identical modulo names are α -equivalent

$(\lambda \mathbf{x}. \ \lambda \mathbf{y}. \ \mathbf{x} \ \mathbf{y}) \ \mathbf{a} \ \mathbf{b} \rightarrow (\lambda \mathbf{y}. \ \mathbf{a} \ \mathbf{y}) \ \mathbf{b} \rightarrow \mathbf{a} \ \mathbf{b}$

- Nested abstractions 'simulate' functions with multiple arguments
- Technique called *currying*, named after Haskell Curry (but thought to go back to Moses Schönfinkel)
- Inverse action applying only some arguments to a curried function before e.g. passing it somewhere else is called *partial application*
- Here: Successive substitutions [x → a] and [y → b]
 = passing first and second argument one after the other

 $(\lambda \mathbf{x}. \ \lambda \mathbf{y}. \ \mathbf{x} \ \mathbf{y}) \ \mathbf{a} \ \mathbf{b} \rightarrow (\lambda \mathbf{y}. \ \mathbf{a} \ \mathbf{y}) \ \mathbf{b} \rightarrow \mathbf{a} \ \mathbf{b}$

Nested abstractions 'simulate' functions with multiple arguments

- Technique called *currying*, named after Haskell Curry (but thought to go back to Moses Schönfinkel)
- Inverse action applying only some arguments to a curried function before e.g. passing it somewhere else is called *partial application*
- Here: Successive substitutions [x → a] and [y → b]
 = passing first and second argument one after the other

 $(\lambda x. \lambda y. x y) a b \rightarrow (\lambda y. a y) b \rightarrow a b$

- Nested abstractions 'simulate' functions with multiple arguments
- Technique called *currying*, named after Haskell Curry (but thought to go back to Moses Schönfinkel)
- Inverse action applying only some arguments to a curried function before e.g. passing it somewhere else is called *partial application*
- Here: Successive substitutions [x → a] and [y → b]
 = passing first and second argument one after the other

 $(\lambda x. \lambda y. x y) a b \rightarrow (\lambda y. a y) b \rightarrow a b$

- Nested abstractions 'simulate' functions with multiple arguments
- Technique called *currying*, named after Haskell Curry (but thought to go back to Moses Schönfinkel)
- Inverse action applying only some arguments to a curried function before e.g. passing it somewhere else is called *partial application*
- ▶ Here: Successive substitutions [x → a] and [y → b]
 = passing first and second argument one after the other

 $(\lambda x. \lambda y. x y) a b \rightarrow (\lambda y. a y) b \rightarrow a b$

- Nested abstractions 'simulate' functions with multiple arguments
- Technique called *currying*, named after Haskell Curry (but thought to go back to Moses Schönfinkel)
- Inverse action applying only some arguments to a curried function before e.g. passing it somewhere else is called *partial application*
- Here: Successive substitutions $[x \mapsto a]$ and $[y \mapsto b]$
 - = passing first and second argument one after the other

Q: How can we calculate something meaningful, having only abstractions? **A**: Find special abstractions we will treat as booleans \Rightarrow *Church booleans*

not = λ b. b fls trutru = λ t. λ f. tand = λ b. λ c. b c flsfls = λ t. λ f. for = λ b. λ c. b tru ctost = λ l. λ r. b ru c

Q: How can we calculate something meaningful, having only abstractions? **A:** Find special abstractions we will treat as booleans \Rightarrow *Church booleans*

 $not = \lambda b. b fls tru$ $tru = \lambda t. \lambda f. t$ and = $\lambda b. \lambda c. b c fls$ $fls = \lambda t. \lambda f. f$ or = $\lambda b. \lambda c. b tru c$

Q: How can we calculate something meaningful, having only abstractions? **A**: Find special abstractions we will treat as booleans \Rightarrow *Church booleans*

 $not = \lambda b. b fls tru$ $tru = \lambda t. \lambda f. t$ and = $\lambda b. \lambda c. b c fls$ $fls = \lambda t. \lambda f. f$ or = $\lambda b. \lambda c. b tru c$

Q: How can we calculate something meaningful, having only abstractions? **A:** Find special abstractions we will treat as booleans \Rightarrow *Church booleans*

 $not = \lambda b. b fls tru$ $tru = \lambda t. \lambda f. t$ and = $\lambda b. \lambda c. b c fls$ $fls = \lambda t. \lambda f. f$ or = $\lambda b. \lambda c. b tru c$

test = λ 1. λ m. λ n. 1 m n

- **Q:** How can we calculate something meaningful, having only abstractions? **A:** Find special abstractions we will treat as booleans \Rightarrow *Church booleans*
 - $not = \lambda b. b fls tru$ $tru = \lambda t. \lambda f. t$ and = $\lambda b. \lambda c. b c fls$ $fls = \lambda t. \lambda f. f$ or = $\lambda b. \lambda c. b tru c$

test = λ 1. λ m. λ n. 1 m n

- **Q:** How can we calculate something meaningful, having only abstractions? **A:** Find special abstractions we will treat as booleans \Rightarrow *Church booleans*
 - $not = \lambda b. b fls tru$ $tru = \lambda t. \lambda f. t$ and = $\lambda b. \lambda c. b c fls$ $fls = \lambda t. \lambda f. f$ or = $\lambda b. \lambda c. b tru c$ $test = \lambda l. \lambda m. \lambda n. l m n$

- **Q**: How can we calculate something meaningful, having only abstractions? **A**: Find special abstractions we will treat as booleans \Rightarrow *Church booleans*
 - $not = \lambda b. b fls tru$ $tru = \lambda t. \lambda f. t$ and = $\lambda b. \lambda c. b c fls$ $fls = \lambda t. \lambda f. f$ or = $\lambda b. \lambda c. b tru c$ $test = \lambda l. \lambda m. \lambda n. l m n$

There is also an encoding for natural numbers, called *Church numerals*:

 $\begin{array}{ll} c_0 = \lambda s. \ \lambda z. \ z & scc = \lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z) \\ c_1 = \lambda s. \ \lambda z. \ s \ z & plus = \lambda m. \ \lambda n. \ \lambda s. \ \lambda z. \ m \ s \ (n \ s \ z) \\ c_2 = \lambda s. \ \lambda z. \ s \ (s \ z) & times = \lambda m. \ \lambda n. \ m \ (plus \ n) \ c_0 \\ \dots & iszro = \lambda m. \ m \ (\lambda x. \ fls) \ tru \end{array}$

Subtraction also possible, but more tricky

• With subtraction we also get equality:

eq = λ n. λ m. and (iszro (minus n m))

(iszro(minusmn))

There is also an encoding for natural numbers, called *Church numerals*:

 $\begin{array}{ll} c_0 = \lambda s. \ \lambda z. \ z & scc = \lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z) \\ c_1 = \lambda s. \ \lambda z. \ s \ z & plus = \lambda m. \ \lambda n. \ \lambda s. \ \lambda z. \ m \ s \ (n \ s \ z) \\ c_2 = \lambda s. \ \lambda z. \ s \ (s \ z) & times = \lambda m. \ \lambda n. \ m \ (plus \ n) \ c_0 \\ \dots & iszro = \lambda m. \ m \ (\lambda x. \ fls) \ tru \end{array}$

Subtraction also possible, but more tricky

• With subtraction we also get equality:

eq = λ n. λ m. and (iszro (minus n m))

(iszro(minus m n))

There is also an encoding for natural numbers, called *Church numerals*:

 $\begin{array}{ll} c_0 = \lambda s. \ \lambda z. \ z & scc = \lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z) \\ c_1 = \lambda s. \ \lambda z. \ s \ z & plus = \lambda m. \ \lambda n. \ \lambda s. \ \lambda z. \ m \ s \ (n \ s \ z) \\ c_2 = \lambda s. \ \lambda z. \ s \ (s \ z) & times = \lambda m. \ \lambda n. \ m \ (plus \ n) \ c_0 \\ \dots & iszro = \lambda m. \ m \ (\lambda x. \ fls) \ tru \end{array}$

Subtraction also possible, but more tricky

• With subtraction we also get equality:

eq = λ n. λ m. and (iszro (minus n m))

(iszro(minus m n))

There is also an encoding for natural numbers, called *Church numerals*:

 $\begin{array}{ll} c_0 = \lambda s. \ \lambda z. \ z & scc = \lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z) \\ c_1 = \lambda s. \ \lambda z. \ s \ z & plus = \lambda m. \ \lambda n. \ \lambda s. \ \lambda z. \ m \ s \ (n \ s \ z) \\ c_2 = \lambda s. \ \lambda z. \ s \ (s \ z) & times = \lambda m. \ \lambda n. \ m \ (plus \ n) \ c_0 \\ \dots & iszro = \lambda m. \ m \ (\lambda x. \ fls) \ tru \end{array}$

Subtraction also possible, but more tricky

• With subtraction we also get equality:

 $eq = \lambda n. \lambda m. and (iszro (minus n m))$

(iszro (minus m n))

There is also an encoding for natural numbers, called *Church numerals*:

 $\begin{array}{ll} c_0 = \lambda s. \ \lambda z. \ z & scc = \lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z) \\ c_1 = \lambda s. \ \lambda z. \ s \ z & plus = \lambda m. \ \lambda n. \ \lambda s. \ \lambda z. \ m \ s \ (n \ s \ z) \\ c_2 = \lambda s. \ \lambda z. \ s \ (s \ z) & times = \lambda m. \ \lambda n. \ m \ (plus \ n) \ c_0 \\ \dots & iszro = \lambda m. \ m \ (\lambda x. \ fls) \ tru \end{array}$

Subtraction also possible, but more tricky

With subtraction we also get equality:

eq = λ n. λ m. and (iszro (minus n m))

There is also an encoding for natural numbers, called *Church numerals*:

- $\begin{array}{ll} c_0 = \lambda s. \ \lambda z. \ z & scc = \lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z) \\ c_1 = \lambda s. \ \lambda z. \ s \ z & plus = \lambda m. \ \lambda n. \ \lambda s. \ \lambda z. \ m \ s \ (n \ s \ z) \\ c_2 = \lambda s. \ \lambda z. \ s \ (s \ z) & times = \lambda m. \ \lambda n. \ m \ (plus \ n) \ c_0 \\ \dots & iszro = \lambda m. \ m \ (\lambda x. \ fls) \ tru \end{array}$
 - Subtraction also possible, but more tricky
 - With subtraction we also get equality:

eq = λ n. λ m. and (iszro (minus n m))

Church numerals

There is also an encoding for natural numbers, called *Church numerals*:

- $\begin{array}{ll} c_0 = \lambda s. \ \lambda z. \ z & scc = \lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z) \\ c_1 = \lambda s. \ \lambda z. \ s \ z & plus = \lambda m. \ \lambda n. \ \lambda s. \ \lambda z. \ m \ s \ (n \ s \ z) \\ c_2 = \lambda s. \ \lambda z. \ s \ (s \ z) & times = \lambda m. \ \lambda n. \ m \ (plus \ n) \ c_0 \\ \dots & iszro = \lambda m. \ m \ (\lambda x. \ fls) \ tru \end{array}$
 - Subtraction also possible, but more tricky
 - With subtraction we also get equality:

eq =
$$\lambda$$
n. λ m. and (iszro (minus n m))
(iszro (minus m n))

No real programming language uses Church encoded data \Rightarrow inefficient! Easy to extend syntax to support primitive data types as atomic values:

- Booleans: add true, false, if t then t else t
- ▶ Numbers: add 0, succ, pred, iszero

Evaluation:

- if-condition evaluated \Rightarrow replace if-expression by correct branch
- succ + pred form redex \Rightarrow when they meet, remove
- iszero 0 evaluates to true, otherwise false

Easy to convert between Church-encoded and primitive values, e.g.:

realbool = λ b. b true false

churchbool $=\lambda$ b.if b then tru else fls

No real programming language uses Church encoded data \Rightarrow inefficient! Easy to extend syntax to support primitive data types as atomic values:

- Booleans: add true, false, if t then t else t
- Numbers: add 0, succ, pred, iszero

Evaluation:

- if-condition evaluated \Rightarrow replace if-expression by correct branch
- ▶ succ + pred form redex ⇒ when they meet, remove
- iszero 0 evaluates to true, otherwise false

Easy to convert between Church-encoded and primitive values, e.g.:

realbool = λ b. b true false

churchbool $=\lambda$ b. if b then tru else fls

No real programming language uses Church encoded data \Rightarrow inefficient!

Easy to extend syntax to support primitive data types as atomic values:

- Booleans: add true, false, if t then t else t
- Numbers: add 0, succ, pred, iszero

Evaluation:

- if-condition evaluated \Rightarrow replace if-expression by correct branch
- ▶ succ + pred form redex \Rightarrow when they meet, remove
- ▶ iszero 0 evaluates to true, otherwise false

Easy to convert between Church-encoded and primitive values, e.g.:

realbool = λ b. b true false

churchbool $=\lambda$ b. if b then tru else fls

No real programming language uses Church encoded data \Rightarrow inefficient!

Easy to extend syntax to support primitive data types as atomic values:

- Booleans: add true, false, if t then t else t
- Numbers: add 0, succ, pred, iszero

Evaluation:

- if-condition evaluated \Rightarrow replace if-expression by correct branch
- ▶ succ + pred form redex \Rightarrow when they meet, remove
- ▶ iszero 0 evaluates to true, otherwise false

Easy to convert between Church-encoded and primitive values, e.g.:

realbool = λ b. b true false

```
churchbool = \lambdab. if b then tru else fls
```


- there are many possible extensions to the pure calculus:
- \blacktriangleright more primitive types, lists, tuples, recursion (\rightarrow looping), \ldots
- ► either as part of formal definition or as syntactic sugar
 ⇒ convenient notation for constructions that are possible,
 but are verbose/ugly/hard to use with base definition
- sugar helps keeping the core language clean and simple
- we do not add more stuff, finally move on to types ...

Q: What about input like if 0 then true else 0 or succ false?

A: Depending on the concrete expression and defined semantics:

- evaluation gets stuck at undefined state (\rightarrow runtime-error)
- **worse**: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input **before** actual evaluation and only accept *well-typed* input that is playing by the rules!

- Assign each function a type of the form $T_1 \rightarrow T_2$
- ▶ read: function taking value of type T₁, returning value of type T₂
- ▶ \rightarrow = type constructor, T_n = type variable
- ▶ → is right-associative: $A \to B \to C = A \to (B \to C)$

- **Q:** What about input like if 0 then true else 0 or succ false?
- A: Depending on the concrete expression and defined semantics:
 - evaluation gets stuck at undefined state (\rightarrow runtime-error)
 - **worse**: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input **before** actual evaluation and only accept *well-typed* input that is playing by the rules!

- Assign each function a type of the form $T_1 \rightarrow T_2$
- ▶ read: function taking value of type T₁, returning value of type T₂
- ▶ \rightarrow = type constructor, T_n = type variable
- ▶ → is right-associative: $A \to B \to C = A \to (B \to C)$

- **Q:** What about input like if 0 then true else 0 or succ false?
- A: Depending on the concrete expression and defined semantics:
 - evaluation gets stuck at undefined state (\rightarrow runtime-error)
 - ► worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input **before** actual evaluation and only accept *well-typed* input that is playing by the rules!

- Assign each function a type of the form $T_1 \rightarrow T_2$
- read: function taking value of type T_1 , returning value of type T_2
- ▶ \rightarrow = type constructor, T_n = type variable
- ▶ → is right-associative: $A \to B \to C = A \to (B \to C)$

- **Q:** What about input like if 0 then true else 0 or succ false?
- A: Depending on the concrete expression and defined semantics:
 - evaluation gets stuck at undefined state (\rightarrow runtime-error)
 - **worse**: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input **before** actual evaluation and only accept *well-typed* input that is playing by the rules!

- Assign each function a type of the form $T_1 \rightarrow T_2$
- read: function taking value of type T_1 , returning value of type T_2
- \blacktriangleright \rightarrow = type constructor, T_n = type variable
- ▶ → is right-associative: $A \to B \to C = A \to (B \to C)$

- **Q:** What about input like if 0 then true else 0 or succ false?
- A: Depending on the concrete expression and defined semantics:
 - evaluation gets stuck at undefined state (\rightarrow runtime-error)
 - **worse**: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input **before** actual evaluation and only accept *well-typed* input that is playing by the rules!

- ▶ Assign each function a type of the form $T_1 \rightarrow T_2$
- ▶ read: function taking value of type *T*₁, returning value of type *T*₂
- \blacktriangleright \rightarrow = type constructor, T_n = type variable
- ▶ → is right-associative: $A \to B \to C = A \to (B \to C)$

- **Q:** What about input like if 0 then true else 0 or succ false?
- A: Depending on the concrete expression and defined semantics:
 - evaluation gets stuck at undefined state (\rightarrow runtime-error)
 - **worse**: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input **before** actual evaluation and only accept *well-typed* input that is playing by the rules!

- ▶ Assign each function a type of the form $T_1 \rightarrow T_2$
- ▶ read: function taking value of type *T*₁, returning value of type *T*₂
- \rightarrow = type constructor, T_n = type variable
- ▶ \rightarrow is right-associative: $A \rightarrow B \rightarrow C = A \rightarrow (B \rightarrow C)$

- **Q:** What about input like if 0 then true else 0 or succ false?
- A: Depending on the concrete expression and defined semantics:
 - evaluation gets stuck at undefined state (\rightarrow runtime-error)
 - **worse**: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input **before** actual evaluation and only accept *well-typed* input that is playing by the rules!

- ▶ Assign each function a type of the form $T_1 \rightarrow T_2$
- ▶ read: function taking value of type *T*₁, returning value of type *T*₂
- \rightarrow = type constructor, T_n = type variable
- ▶ \rightarrow is right-associative: $A \rightarrow B \rightarrow C = A \rightarrow (B \rightarrow C)$

Syntax

İSp

Definition (Syntax of simply typed λ -calculus (λ^{\rightarrow}))

t ::= x	variable
λx : T . t	abstraction
t	application

- Invented by Church in 1940
- Only superficial difference: every abstraction gets type annotation
- simply typed = only way to construct types is \rightarrow

 \blacktriangleright Let Γ be a set of assumptions about types of terms,

e.g. free variables, called typing context

- $\Gamma \vdash t : T$ means 'under given assumptions the term t has the type T'
- ► Γ can be $\emptyset \Rightarrow$ can be omitted in that case: \vdash t : T or t : T $\frac{A}{2}$
- B is a deduction rule, means implication like $A \Rightarrow B$

- Let Γ be a set of assumptions about types of terms,
 e.g. free variables, called *typing context*
- $\Gamma \vdash t : T$ means 'under given assumptions the term t has the type T'
- ► Γ can be $\emptyset \Rightarrow$ can be omitted in that case: \vdash t : T or t : T \underline{A}
- *B* is a *deduction rule*, means implication like $A \Rightarrow B$

- Let Γ be a set of assumptions about types of terms,
 e.g. free variables, called *typing context*
- $\Gamma \vdash t : T$ means 'under given assumptions the term t has the type T'
- Γ can be Ø ⇒ can be omitted in that case: ⊢ t : T or t : T
 A/B is a deduction rule, means implication like A ⇒ B

- Let Γ be a set of assumptions about types of terms, e.g. free variables, called typing context
- $\Gamma \vdash t : T$ means 'under given assumptions the term t has the type T'
- Γ can be $\emptyset \Rightarrow$ can be omitted in that case: $\vdash t : T$ or t : T $\blacktriangleright \frac{A}{B}$
- is a *deduction rule*, means implication like $A \Rightarrow B$

Typing rules

Definition (Typing of variables (T-Var))

 $\frac{\mathbf{x}:\mathbf{T}\in\Gamma}{\Gamma\vdash\mathbf{x}:\mathbf{T}}$

Definition (Typing of abstractions (T-Abs))

 $\frac{\Gamma, x: \mathtt{T}_1 \vdash \mathtt{t}_2: \mathtt{T}_2}{\Gamma \vdash \lambda x: \mathtt{T}_1. \, \mathtt{t}_2: \mathtt{T}_1 \rightarrow \mathtt{T}_2}$

Definition (Typing of applications (T-App))

$$\frac{\Gamma \vdash \mathtt{t}_1: \mathtt{T}_{11} \rightarrow \mathtt{T}_{12} \quad \Gamma \vdash \mathtt{t}_2: \mathtt{T}_{11}}{\Gamma \vdash \mathtt{t}_1 \, \mathtt{t}_2: \mathtt{T}_{12}}$$

Typing rules

Definition (Typing of variables (T-Var))

 $\frac{\mathbf{x}:\mathbf{T}\in\Gamma}{\Gamma\vdash\mathbf{x}:\mathbf{T}}$

Definition (Typing of abstractions (T-Abs))

 $\frac{\Gamma, x: \mathtt{T}_1 \vdash \mathtt{t}_2: \mathtt{T}_2}{\Gamma \vdash \lambda x: \mathtt{T}_1. \, \mathtt{t}_2: \mathtt{T}_1 \rightarrow \mathtt{T}_2}$

Definition (Typing of applications (T-App))

$$\frac{\Gamma \vdash t_1: \mathtt{T}_{11} \rightarrow \mathtt{T}_{12} \quad \Gamma \vdash t_2: \mathtt{T}_{11}}{\Gamma \vdash t_1 \ t_2: \mathtt{T}_{12}}$$

Typing rules

Definition (Typing of variables (T-Var))

 $\frac{\mathbf{x}:\mathbf{T}\in\Gamma}{\Gamma\vdash\mathbf{x}:\mathbf{T}}$

Definition (Typing of abstractions (T-Abs))

 $\frac{\Gamma, \mathbf{x}: \mathtt{T}_1 \vdash \mathtt{t}_2: \mathtt{T}_2}{\Gamma \vdash \lambda \mathbf{x}: \mathtt{T}_1. \mathtt{t}_2: \mathtt{T}_1 \to \mathtt{T}_2}$

Definition (Typing of applications (T-App))

$$\frac{\Gamma \vdash \mathtt{t}_1: \mathtt{T}_{11} \rightarrow \mathtt{T}_{12} \quad \Gamma \vdash \mathtt{t}_2: \mathtt{T}_{11}}{\Gamma \vdash \mathtt{t}_1 \, \mathtt{t}_2: \mathtt{T}_{12}}$$

Typing rules for booleans and numbers

Definition (T-True, T-False, T-If)

		$\Gamma \vdash t_1 : \texttt{Bool}$	$\Gamma \vdash t_2: T$	$\Gamma \vdash t_3: T$
true:Bool	false:Bool	$\Gamma \vdash ift_1t$	hen t ₂ els	et₃:T

Note that t_2 and t_3 in the if-expression must have the same type T!

Definition (T-Zero, T-Succ, T-Pred, T-IsZero)

 $\frac{\Gamma \vdash t_1: Nat}{0: Nat} \xrightarrow{\Gamma \vdash t_1: Nat} \frac{\Gamma \vdash t_1: Nat}{\Gamma \vdash predt_1: Nat} \xrightarrow{\Gamma \vdash t_1: Nat}$

Typing rules for booleans and numbers

Definition (T-True, T-False, T-If)

		$\Gamma \vdash t_1 : \texttt{Bool}$	$\Gamma \vdash t_2: T$	$\Gamma \vdash t_3: T$
true:Bool	false:Bool	$\Gamma \vdash ift_1t$	hent2 els	et ₃ :T

Note that t_2 and t_3 in the if-expression must have the same type T!

Definition (T-Zero, T-Succ, T-Pred, T-IsZero)

$$0: \texttt{Nat} \quad \frac{\Gamma \vdash \texttt{t}_1: \texttt{Nat}}{\Gamma \vdash \texttt{succt}_1: \texttt{Nat}} \quad \frac{\Gamma \vdash \texttt{t}_1: \texttt{Nat}}{\Gamma \vdash \texttt{predt}_1: \texttt{Nat}} \quad \frac{\Gamma \vdash \texttt{t}_1: \texttt{Nat}}{\Gamma \vdash \texttt{iszerot}_1: \texttt{Bool}}$$

Let's prove

Let's prove

f: Bool → Bool ∈ f: Bool → Bool T = Var	$\frac{\mathbf{x} : \text{Bool} \in \mathbf{x} : \text{Bool}}{\mathbf{x} : \text{Bool} \vdash \mathbf{x} : \text{Bool}} T - Var \frac{T - False}{T - If}$
f:Bool \rightarrow Bool, x:Bool \vdash f(T = App
$f:Bool \to Bool \vdash \lambda x:Bool, f(if x)$	Then false else x) : Bool \rightarrow Bool

Let's prove

Proof.	
$\frac{f:Bool \to Bool \in f:Bool \to Bool}{f:Bool \to Bool \vdash f:Bool \to Bool} T - Var$	$\frac{x:Bool \in x:Bool}{x:Bool \vdash x:Bool} T - Var {false:Bool} \frac{T - False}{T - If}$
$f: Bool \rightarrow Bool, x: Bool \vdash f()$ $f: Bool \rightarrow Bool \vdash \lambda x: Bool, f()$ if x	f x then false else x) : Bool $T - Abs$ then false else x) : Bool \rightarrow Bool

Let's prove

isp

Let's prove

 $f: Bool \rightarrow Bool \vdash \lambda x: Bool. f(if x then false else x): Bool \rightarrow Bool$

Proof. $\frac{f:Bool \to Bool \in f:Bool \to Bool}{f:Bool \to Bool \to Bool} T - Var \frac{\frac{x:Bool \in x:Bool}{x:Bool + x:Bool}}{x:Bool + if x then false else x:Bool} \frac{T - False}{T - If} \frac{f:Bool \to Bool \to Bool \times :Bool + f(If x then false else x):Bool}{T:Bool \to Bool + \lambda x:Bool + f(If x then false else x):Bool \to Bool} T - Abs$

isp

Let's prove

 $f: Bool \rightarrow Bool \vdash \lambda x: Bool. f(if x then false else x): Bool \rightarrow Bool$

Proof.

isp

Let's prove

 $f: Bool \rightarrow Bool \vdash \lambda x: Bool. f(if x then false else x): Bool \rightarrow Bool$

Proof.

Two important theorems can be shown for λ^{\rightarrow} by structural induction:

Theorem (Progress)

Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \rightarrow t'.

Theorem (Preservation)

If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Two important theorems can be shown for λ^{\rightarrow} by structural induction:

Theorem (Progress)

Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then

either t is a value or else there is some t' with $t \rightarrow t'$.

Theorem (Preservation)

If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Two important theorems can be shown for λ^{\rightarrow} by structural induction:

Theorem (Progress)

Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then

either t is a value or else there is some t' with $t \rightarrow t'$.

Theorem (Preservation)

```
If \Gamma \vdash t : T and t \rightarrow t', then \Gamma \vdash t' : T.
```


What does it mean?

Progress:

Every well-typed term can be reduced to a value

Preservation:

Every well-typed term evaluates to a well-typed term with the same type

progress+preservation=type safety

 \Rightarrow well-typed terms never get stuck during evaluation!

Another property that can be shown:

type erasure does not influence evaluation \Rightarrow Types can be (and are often!) removed during compilation, if everything is ok

Reverse action – type reconstruction:

finding a possible type of a term with incomplete type annotations

▶ if the reconstruction possible, the term is *typable*, if not: either invalid term or insufficient information

Another property that can be shown:

type erasure does not influence evaluation \Rightarrow Types can be (and are often!) removed during compilation, if everything is ok

▶ Reverse action – *type reconstruction*:

finding a possible type of a term with incomplete type annotations

 if the reconstruction possible, the term is *typable*, if not: either invalid term or insufficient information

doubleNat = λf : Nat \rightarrow Nat. λx : Nat. f (f x)

doubleBool = λf : Bool \rightarrow Bool. λx : Bool. f (f x)

doubleAll = ?

doubleNat = λf : Nat \rightarrow Nat. λx : Nat. f (f x) doubleBool = λf : Bool \rightarrow Bool. λx : Bool. f (f x)

 $\begin{aligned} & \text{doubleNat} = \lambda f: \text{Nat} \to \text{Nat.} \ \lambda x: \text{Nat.} f (f x) \\ & \text{doubleBool} = \lambda f: \text{Bool} \to \text{Bool.} \ \lambda x: \text{Bool.} f (f x) \\ & \text{doubleAll} = \end{aligned}$

Problem:

For each type we need to duplicate identical code with other type annotations!

 $\begin{aligned} & \text{doubleNat} = \lambda f: \text{Nat} \to \text{Nat.} \lambda x: \text{Nat.} f(f x) \\ & \text{doubleBool} = \lambda f: \text{Bool} \to \text{Bool.} \lambda x: \text{Bool.} f(f x) \\ & \text{doubleAll} = ? \end{aligned}$

Problem:

For each type we need to duplicate identical code with other type annotations!

We want something like Java Generics / C++ Templates

 \Rightarrow we need to extend λ^{\rightarrow} with *parametric polymorphism*

 $\begin{aligned} & \text{doubleNat} = \lambda f: \text{Nat} \to \text{Nat}. \ \lambda x: \text{Nat}. f(f x) \\ & \text{doubleBool} = \lambda f: \text{Bool} \to \text{Bool}. \ \lambda x: \text{Bool}. f(f x) \\ & \text{doubleAll} = ? \end{aligned}$

Problem:

For each type we need to duplicate identical code with other type annotations! We want something like Java Generics / C++ Templates

 \Rightarrow we need to extend λ^{\rightarrow} with *parametric polymorphism*

```
~ System F (Girard, 1972)
```


Definition (Syntax of System F)

t

::= x	variable
$\lambda \mathbf{x}: \mathtt{T.t}$	abstraction
t	application
λ X.t	type abstraction
t[T]	type application

uppercase letters = type variables, lowercase letters = terms

- ► type abstraction/application works similar to normal, but we substitute type variables: (λx. t₁₂) [T₂] → [X ↦ T₂]t₁₂
- before annotated types had to be concrete, now they are abstracted
 we need new types and typing rules to express this
- ▶ type abstractions get a *universal type* of the form ∀x.T
- ► now we have two different type constructors: → and ∀

- ► type abstraction/application works similar to normal, but we substitute type variables: (λx. t₁₂) [T₂] → [X ↦ T₂]t₁₂
- before annotated types had to be concrete, now they are abstracted
 we need new types and typing rules to express this
- ▶ type abstractions get a *universal type* of the form ∀x.T
- \blacktriangleright now we have two different type constructors: \rightarrow and \forall
 - ⇒ second-order lambda calculus

- ► type abstraction/application works similar to normal, but we substitute type variables: (λx. t₁₂) [T₂] → [X ↦ T₂]t₁₂
- ▶ before annotated types had to be concrete, now they are abstracted ⇒ we need new types and typing rules to express this
- ► type abstractions get a *universal type* of the form ∀X.T
- $\blacktriangleright\,$ now we have two different type constructors: \rightarrow and $\forall\,$
 - \Rightarrow second-order lambda calculus

Rules for universal types

Definition (Typing of type abstractions (T-TAbs))

 $\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X. t_2 : \forall X. T_2}$

Definition (Typing of type applications (T-TApp))

 $\frac{\Gamma \vdash t_1 : \forall X.T_{12}}{\Gamma \vdash t_1 [T_2] : [X \mapsto T_2]T_{12}}$

Rules for universal types

Definition (Typing of type abstractions (T-TAbs))

 $\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X. t_2 : \forall X. T_2}$

Definition (Typing of type applications (T-TApp))

 $\frac{\Gamma \vdash t_1 : \forall X.T_{12}}{\Gamma \vdash t_1 [T_2] : [X \mapsto T_2]T_{12}}$

idNat = id [Nat] = λ x : Nat. x type Nat ightarrow Nat

double = $\lambda X. \lambda f : X \to X. \lambda x : X. f (f x)$ type $\forall X.(X \to X) \to X \to X$ dblBool = double [Bool] = $\lambda f : Bool \to Bool. \lambda x : Bool. f (f x)$ type (Bool $\to Bool) \to Bool \to Bool$

i

Examples

$$id = \lambda X. \ \lambda x : X. \ x \qquad type \ \forall X.X \rightarrow X$$
$$dNat = id [Nat] = \lambda x : Nat. \ x \qquad type \ Nat \rightarrow Nat$$
$$double = \lambda X. \ \lambda f : X \rightarrow X. \ \lambda x : X. \ f \ (f \ x)$$
$$type \ \forall X.(X \rightarrow X) \rightarrow X \rightarrow X$$
$$dblBool = double [Bool]$$
$$= \lambda f : Bool \rightarrow Bool. \ \lambda x : Bool. \ f \ (f \ x)$$
$$type \ (Bool \rightarrow Bool) \rightarrow Bool \rightarrow Bool$$

$$\label{eq:constraint} \begin{split} & \text{id} = \lambda \text{X}. \; \lambda \text{x} : \text{X}. \; \text{x} & \text{type} \; \forall \text{X}. \text{X} \to \text{X} \\ & \text{idNat} = \text{id} \; [\text{Nat}] = \lambda \text{x} : \text{Nat. x} & \text{type} \; \text{Nat} \to \text{Nat} \end{split}$$

turno $\forall V V \rightarrow V$

double =
$$\lambda X. \lambda f : X \to X. \lambda x : X. f (f x)$$

type $\forall X.(X \to X) \to X \to X$
dblBool = double [Bool]
= $\lambda f : Bool \to Bool. \lambda x : Bool. f (f x)$
type (Bool $\to Bool) \to Bool \to Bool$

id _ \v \...v ..

Examples

$$id = \lambda x. \lambda x . \lambda x$$

$$idNat = id [Nat] = \lambda x : Nat. x$$

$$type VA. A \to A$$

$$type Nat \to Nat$$

turno $\forall V V \rightarrow V$

$$\begin{array}{l} \text{double} = \lambda X. \ \lambda \text{f} : X \to X. \ \lambda \text{x} : X. \ \text{f} \ (\text{f x}) \\\\ \text{type} \ \forall X. (X \to X) \to X \to X \\\\ \text{dblBool} = \ \text{double} \ [\text{Bool}] \\\\ = \ \lambda \text{f} : \text{Bool} \to \text{Bool}. \ \lambda \text{x} : \text{Bool}. \ \text{f} \ (\text{f x}) \\\\ \text{type} \ (\text{Bool} \to \text{Bool}) \to \text{Bool} \to \text{Bool} \end{array}$$

$\texttt{quad} = \lambda \texttt{X}. \texttt{ double } [\texttt{X} \to \texttt{X}] \texttt{ (double } [\texttt{X}]\texttt{)} \quad \texttt{type } \forall \texttt{X}.(\texttt{X} \to \texttt{X}) \to \texttt{X} \to \texttt{X}$

$\texttt{quad} = \lambda \texttt{X}. \texttt{ double } [\texttt{X} \to \texttt{X}] \texttt{ (double } [\texttt{X}]\texttt{)} \quad \texttt{type } \forall \texttt{X}.(\texttt{X} \to \texttt{X}) \to \texttt{X} \to \texttt{X}$

Wait, what?!

 $\texttt{quad} = \lambda \texttt{X}. \; \texttt{double} \; [\texttt{X} \to \texttt{X}] \; (\texttt{double} \; [\texttt{X}]) \quad \texttt{type} \; \forall \texttt{X}. (\texttt{X} \to \texttt{X}) \to \texttt{X} \to \texttt{X}$

Wait, what?! Yes, it is correct. Let's evaluate it:

quad = λX . double $[X \rightarrow X]$ (double [X]) = λX . ($\lambda f : (X \rightarrow X) \rightarrow X \rightarrow X$. $\lambda a : X \rightarrow X$. f (f a)) (double [X]) = λX . $\lambda a : X \rightarrow X$. double [X] (double [X] a) = λX . $\lambda a : X \rightarrow X$. ($\lambda g : X \rightarrow X$. $\lambda b : X$. g (g b)) (double [X] a) = λX . $\lambda a : X \rightarrow X$. ($\lambda g : X \rightarrow X$. $\lambda b : X$. g (g b)) (double [X] a) = λX . $\lambda a : X \rightarrow X$. $\lambda b : X$. double [X] a (double [X] a b) = λX . $\lambda a : X \rightarrow X$. $\lambda b : X$. a (a (a (a b)))

 $\texttt{quad} = \lambda \texttt{X}. \; \texttt{double} \; [\texttt{X} \to \texttt{X}] \; (\texttt{double} \; [\texttt{X}]) \quad \texttt{type} \; \forall \texttt{X}. (\texttt{X} \to \texttt{X}) \to \texttt{X} \to \texttt{X}$

quad =
$$\lambda X$$
. double $[X \to X]$ (double $[X]$)
= λX . (λf : ($X \to X$) $\to X \to X$. λa : $X \to X$. f (f a)) (double $[X]$)
= λX . λa : $X \to X$. double $[X]$ (double $[X]$ a)
= λX . λa : $X \to X$. (λg : $X \to X$. λb : X . g (g b)) (double $[X]$ a)
= λX . λa : $X \to X$. (λg : $X \to X$. λb : X . g (g b)) (double $[X]$ a)
= λX . λa : $X \to X$. λb : X . double $[X]$ a (double $[X]$ a b)
= λX . λa : $X \to X$. λb : X . a (a (a (a b)))

 $\texttt{quad} = \lambda \texttt{X}. \; \texttt{double} \; [\texttt{X} \to \texttt{X}] \; (\texttt{double} \; [\texttt{X}]) \quad \texttt{type} \; \forall \texttt{X}. (\texttt{X} \to \texttt{X}) \to \texttt{X} \to \texttt{X}$

quad =
$$\lambda X$$
. double $[X \to X]$ (double $[X]$)
= λX . ($\lambda f : (X \to X) \to X \to X$. $\lambda a : X \to X$. f (f a)) (double $[X]$)
= λX . $\lambda a : X \to X$. double $[X]$ (double $[X] a$)
= λX . $\lambda a : X \to X$. ($\lambda g : X \to X$. $\lambda b : X$. g (g b)) (double $[X] a$)
= λX . $\lambda a : X \to X$. ($\lambda g : X \to X$. $\lambda b : X$. g (double $[X] a$)
= λX . $\lambda a : X \to X$. ($\lambda g : X \to X$. $\lambda b : X$. double $[X] a$ (double $[X] a$)
= λX . $\lambda a : X \to X$. $\lambda b : X$. a (a (a (a b)))

 $\texttt{quad} = \lambda \texttt{X}. \; \texttt{double} \; [\texttt{X} \to \texttt{X}] \; (\texttt{double} \; [\texttt{X}]) \quad \texttt{type} \; \forall \texttt{X}. (\texttt{X} \to \texttt{X}) \to \texttt{X} \to \texttt{X}$

quad =
$$\lambda X$$
. double $[X \to X]$ (double $[X]$)
= λX . ($\lambda f : (X \to X) \to X \to X$. $\lambda a : X \to X$. f (f a)) (double $[X]$)
= λX . $\lambda a : X \to X$. double $[X]$ (double $[X] a$)
= λX . $\lambda a : X \to X$. ($\lambda g : X \to X$. $\lambda b : X$. g (g b)) (double $[X] a$)
= λX . $\lambda a : X \to X$. ($\lambda g : X \to X$. $\lambda b : X$. g (double $[X] a$)
= λX . $\lambda a : X \to X$. ($\lambda g : X \to X$. $\lambda b : X$. g (double $[X] a$)
= λX . $\lambda a : X \to X$. $\lambda b : X$. double $[X] a$ (double $[X] a$ b)
= λX . $\lambda a : X \to X$. $\lambda b : X$. a (a (a (a b)))

 $\texttt{quad} = \lambda \texttt{X}. \texttt{ double } [\texttt{X} \to \texttt{X}] \texttt{ (double } [\texttt{X}] \texttt{)} \quad \texttt{type } \forall \texttt{X}.(\texttt{X} \to \texttt{X}) \to \texttt{X} \to \texttt{X}$

quad =
$$\lambda X$$
. double $[X \to X]$ (double $[X]$)
= λX . ($\lambda f : (X \to X) \to X \to X$. $\lambda a : X \to X$. f (f a)) (double $[X]$)
= λX . $\lambda a : X \to X$. double $[X]$ (double $[X] a$)
= λX . $\lambda a : X \to X$. ($\lambda g : X \to X$. $\lambda b : X$. g (g b)) (double $[X] a$)
= λX . $\lambda a : X \to X$. $\lambda b : X$. double $[X] a$ (double $[X] a b$)
= λX . $\lambda a : X \to X$. $\lambda b : X$. a (a (a (a b)))

 $\texttt{quad} = \lambda \texttt{X}. \texttt{ double } [\texttt{X} \to \texttt{X}] \texttt{ (double } [\texttt{X}] \texttt{)} \quad \texttt{type } \forall \texttt{X}.(\texttt{X} \to \texttt{X}) \to \texttt{X} \to \texttt{X}$

quad =
$$\lambda X$$
. double $[X \to X]$ (double $[X]$)
= λX . ($\lambda f : (X \to X) \to X \to X$. $\lambda a : X \to X$. f (f a)) (double $[X]$)
= λX . $\lambda a : X \to X$. double $[X]$ (double $[X]$ a)
= λX . $\lambda a : X \to X$. ($\lambda g : X \to X$. $\lambda b : X$. g (g b)) (double $[X]$ a)
= λX . $\lambda a : X \to X$. $\lambda b : X$. double $[X]$ a (double $[X]$ a b)
= λX . $\lambda a : X \to X$. $\lambda b : X$. a (a (a (a b)))

- > As you see, parametric polymorphism is very expressive
- ► Haskell programs desugar to an ext. System F form during compilation
- preservation and progress theorems still hold in System $F \Rightarrow type-safe$
- ▶ type reconstruction undecidable ⇒ not all annotations can be omitted
- Languages based on System F have artificial restrictions on valid terms to keep partial reconstruction possible

- > As you see, parametric polymorphism is very expressive
- Haskell programs desugar to an ext. System F form during compilation
- preservation and progress theorems still hold in System $F \Rightarrow \textbf{type-safe}$
- type reconstruction undecidable \Rightarrow not all annotations can be omitted
- Languages based on System F have artificial restrictions on valid terms to keep partial reconstruction possible

Type theory and OOP

- Important branch: λ-calculi with subtyping (Reynolds, Cardelli (1980's))
- Theoretical foundation of inheritance in OOP
- Extension: *Subtyping relation* with new set of deduction rules
- Says which types can be treated as more general types
 - \Rightarrow Functions can ignore specialisation and work on more inputs
- Efforts to prove type safety of Java (first by Drossopoulou, Eisenbach and Khurshid (1999))
 - \Rightarrow using calculi with subtyping which resemble Java subsets

Type theory and OOP

- Important branch: λ-calculi with subtyping (Reynolds, Cardelli (1980's))
- Theoretical foundation of inheritance in OOP
- Extension: Subtyping relation with new set of deduction rules
- Says which types can be treated as more general types
 - \Rightarrow Functions can ignore specialisation and work on more inputs
- Efforts to prove type safety of Java (first by Drossopoulou, Eisenbach and Khurshid (1999))
 - \Rightarrow using calculi with subtyping which resemble Java subsets

Type theory and OOP

- Important branch: λ-calculi with subtyping (Reynolds, Cardelli (1980's))
- Theoretical foundation of inheritance in OOP
- Extension: Subtyping relation with new set of deduction rules
- Says which types can be treated as more general types
 - \Rightarrow Functions can ignore specialisation and work on more inputs
- Efforts to prove type safety of Java (first by Drossopoulou, Eisenbach and Khurshid (1999))
 - \Rightarrow using calculi with subtyping which resemble Java subsets

Type theory and logic

- Curry-Howard-Correspondence: (Curry (1958), Howard (1980))
 isomorphism: types ≈ propositions, terms ≈ proofs!
 ⇒ Connection between constructive logic and computer science
- E.g. used for tools like Coq interactive theorem prover
- Helps the user formulating assertions and finding proofs
- proof-checking = type-checking the program!
- Such tools often based on calculi with *dependent types* ⇒ types like Array n → Array (n + 1) possible

Type theory and logic

- ► Curry-Howard-Correspondence: (Curry (1958), Howard (1980)) isomorphism: types ≈ propositions, terms ≈ proofs!
 - \Rightarrow Connection between constructive logic and computer science
- E.g. used for tools like Coq interactive theorem prover
- Helps the user formulating assertions and finding proofs
- proof-checking = type-checking the program!
- ▶ Such tools often based on calculi with *dependent types* ⇒ types like $Array n \rightarrow Array (n + 1)$ possible

Type theory and logic

- ► Curry-Howard-Correspondence: (Curry (1958), Howard (1980)) isomorphism: types ≈ propositions, terms ≈ proofs!
 - \Rightarrow Connection between constructive logic and computer science
- E.g. used for tools like Coq interactive theorem prover
- Helps the user formulating assertions and finding proofs
- proof-checking = type-checking the program!
- Such tools often based on calculi with dependent types

 \Rightarrow types like Array n \rightarrow Array (n + 1) possible

Q: What do we get using type systems in the context of software verification?

- our program will compile and execute (catch syntax errors)
- our functions will take and return the intended data types (catch violations of our mental model/the designed API)
- we can control which functions can do which effects, prevent specific values to be taken out of context
 (e.g. the Monad typeclass in Haskell)
- With dependent types: prove almost arbitrary properties,
 e.g. check for array-out-of-bound errors on compile time or
 even prove that a sorting algorithm sorts correctly

- **Q:** What do we get using type systems in the context of software verification? **A:**
 - our program will compile and execute (catch syntax errors)
 - our functions will take and return the intended data types (catch violations of our mental model/the designed API)
 - we can control which functions can do which effects, prevent specific values to be taken out of context
 (e.g. the Monad typeclass in Haskell)
 - With dependent types: prove almost arbitrary properties,
 e.g. check for array-out-of-bound errors on compile time or
 even prove that a sorting algorithm sorts correctly

- **Q**: What do we get using type systems in the context of software verification? **A**:
 - our program will compile and execute (catch syntax errors)
 - our functions will take and return the intended data types (catch violations of our mental model/the designed API)
 - we can control which functions can do which effects, prevent specific values to be taken out of context
 (e.g. the Monad typeclass in Haskell)
 - With dependent types: prove almost arbitrary properties,
 e.g. check for array-out-of-bound errors on compile time or
 even prove that a sorting algorithm sorts correctly

İS

- **Q**: What do we get using type systems in the context of software verification? **A**:
 - our program will compile and execute (catch syntax errors)
 - our functions will take and return the intended data types (catch violations of our mental model/the designed API)
 - we can control which functions can do which effects, prevent specific values to be taken out of context
 (e.g. the Monad typeclass in Haskell)
 - With dependent types: prove almost arbitrary properties,
 e.g. check for array-out-of-bound errors on compile time or
 even prove that a sorting algorithm sorts correctly

isp

Q: What do we get using type systems in the context of software verification? **A:**

- our program will compile and execute (catch syntax errors)
- our functions will take and return the intended data types (catch violations of our mental model/the designed API)
- we can control which functions can do which effects, prevent specific values to be taken out of context
 (e.g. the Monad typeclass in Haskell)
- With dependent types: prove almost arbitrary properties,
 e.g. check for array-out-of-bound errors on compile time or
 even prove that a sorting algorithm sorts correctly

Conclusion

- more powerful type systems require more work by the developer
- ► a clear model of the types in an application is necessery
- types are also a form of formal specification as usual, it is balance between more safety and more additional work
- λ-calculi are an important model to prove properties and develop new algorithms and abstractions
- results can be and are transferred to real-world programming languages
 developers profit from better, safer and more expressive tools :)

- more powerful type systems require more work by the developer
- ► a clear model of the types in an application is necessery
- types are also a form of formal specification as usual, it is balance between more safety and more additional work
- λ-calculi are an important model to prove properties and develop new algorithms and abstractions
- results can be and are transferred to real-world programming languages
 developers profit from better, safer and more expressive tools :)

Conclusion

- more powerful type systems require more work by the developer
- a clear model of the types in an application is necessery
- types are also a form of formal specification as usual, it is balance between more safety and more additional work
- λ-calculi are an important model to prove properties and develop new algorithms and abstractions
- results can be and are transferred to real-world programming languages
 developers profit from better, safer and more expressive tools :)

Benjamin C. Pierce. *Types and Programming Languages*, MIT Press, 2002

- A. Church, An unsolvable problem of elementary number theory,
 American Journal of Mathematics, Volume 58, No. 2. (April 1936), pp. 345-363.
- A. Church, A Formulation of the Simple Theory of Types, Journal of Symbolic Logic, Volume 5 (1940).
- A. M. Turing, *Computability and λ-Definability*, The Journal of Symbolic Logic, Vol. 2, No. 4. (Dec., 1937), pp. 153-163.
- H. Curry, R. Feys Combinatory Logic Vol. I, Amsterdam, North-Holland (1958)
- W. A. Howard *The formulae-as-types notion of construction* in Essays on Combinatory Logic, Lambda Calculus and Formalism, Boston, MA (Sep. 1980), pp. 479-490

- John C. Reynolds *Definitional Interpreters for Higher-Order Programming Languages*, Higher-Order and Symbolic Computation 11 (1998)
- J. Girard Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur, Université Paris (1974)
- John C. Reynolds *Using category theory to design implicit conversions and generic operators*, Lecture Notes in Computer Science vol. 94, Springer-Verlag (1980)
- L. Cardelli *A semantics of multiple inheritance*, Lecture Notes in Computer Science vol. 173, pp. 51-67, Springer-Verlag (1984)
- S. Drossopoulou, S. Eisenbach, S. Khurshid *Is the Java Type System Sound?*, Theory and Practice of Object Systems (1999)