Introduction to the Simply Typed Lambda Calculus

Anton Pirogov

October 6, 2014

Table of contents I

Introduction
The Untyped Lambda Calculus
Syntax and evaluation
Working with the Lambda Calculus
Beyond the pure calculus
Adding Types
Motivation
The simply typed lambda calculus
Properties of typing

System F

Type theory, OOP and logic
Conclusion

Why type systems?

Many popular languages do not require tracking types of variables, which seems rather comfortable. Why should you care about type systems?

- Type checking prevents common and trivial bugs
\square \Rightarrow weak + dynamic typing $=$ have fun debugging
\square \rightarrow cleaner hetter organized recults

Why type systems?

Many popular languages do not require tracking types of variables, which seems rather comfortable. Why should you care about type systems?

- Type checking prevents common and trivial bugs
E.g. JavaScript or PHP: $1000==$ "1e3" is true!
\Rightarrow weak + dynamic typing $=$ have fun debugging!
- Working with types - "First think, then code"
\Rightarrow cleaner, better organized results
- Tymes are nover-outdated documentation!

Why type systems?

Many popular languages do not require tracking types of variables, which seems rather comfortable. Why should you care about type systems?

- Type checking prevents common and trivial bugs
E.g. JavaScript or PHP: $1000==$ "1e3" is true!
\Rightarrow weak + dynamic typing $=$ have fun debugging!
- Working with types - "First think, then code"
\Rightarrow cleaner, better organized results
- Types are never-outdated documentation!
- Type inference \Rightarrow not necesserily verbose

Why type systems?

Many popular languages do not require tracking types of variables, which seems rather comfortable. Why should you care about type systems?

- Type checking prevents common and trivial bugs
E.g. JavaScript or PHP: $1000==$ "1e3" is true!
\Rightarrow weak + dynamic typing $=$ have fun debugging!
- Working with types - "First think, then code"
\Rightarrow cleaner, better organized results
- Types are never-outdated documentation!
- Type inference \Rightarrow not necesserily verbose

Why type systems?

Many popular languages do not require tracking types of variables, which seems rather comfortable. Why should you care about type systems?

- Type checking prevents common and trivial bugs
E.g. JavaScript or PHP: $1000==$ "1e3" is true!
\Rightarrow weak + dynamic typing $=$ have fun debugging!
- Working with types - "First think, then code"
\Rightarrow cleaner, better organized results
- Types are never-outdated documentation!
- Type inference \Rightarrow not necesserily verbose

Untyped Lambda Calculus

Some facts:

- fundamental formal system for computation
- introduced by Alonzo Church in 1936
- shown to be equivalent to Turing Machines in 1937
- used especially in type theory + PL research
- mother of all functional programming languages (especially ML and LISP family)

Syntax

Definition (Syntax of λ-calculus)

$\mathrm{t}::=$	x	variable
	$\lambda \mathrm{x} . \mathrm{t}$	abstraction
t t	application	

- Abstraction $=$ Function
* We will sometimes use parentheses
- When not, assume $\lambda \mathrm{x}$.
$x^{x} \cdot x y: x$ is bound, y is free

Syntax

Definition (Syntax of λ-calculus)

$\mathrm{t}::=\mathrm{x}$	variable
$\lambda \mathrm{x} . \mathrm{t}$	abstraction
t t	application

- Abstraction = Function
- We will sometimes use parentheses
- When not, assume $\lambda \mathrm{x} . \ldots=(\lambda \mathrm{x} . \ldots)$
- $\lambda \mathrm{x} . \mathrm{x} \mathrm{y}: \mathrm{x}$ is bound, y is free

Evaluation

- one abstraction has exactly one parameter
- abstraction + application $=$ redex (reducible expression)
- non-reducible terms = values
* in pure λ-calculus: abstraction is only kind of data
\Rightarrow computations always return other abstractions (only possible value!)
- 'seta reduction: one step of redex evaluation
\Rightarrow function evaluation $=$ term substitution

Evaluation

- one abstraction has exactly one parameter
- abstraction + application = redex (reducible expression)
- non-reducible terms = values
- in pure λ-calculus: abstraction is only kind of data
\Rightarrow computations always return other abstractions (only possible value!)
- beta reduction: one step of redex evaluation \Rightarrow function evaluation $=$ term substitution w we use call-by-vatue evaluation evaluate terms left to right (depth-first) af remaining tern is redex, reoursively continue evaluating - Other evaluation strategies also possible

Evaluation

- one abstraction has exactly one parameter
- abstraction + application = redex (reducible expression)
- non-reducible terms = values
- in pure λ-calculus: abstraction is only kind of data
\Rightarrow computations always return other abstractions (only possible value!)
- beta reduction: one step of redex evaluation

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{1}\right) \mathrm{t}_{2} \rightarrow\left[\mathrm{x} \mapsto \mathrm{t}_{2}\right] \mathrm{t}_{1}
$$

\Rightarrow function evaluation $=$ term substitution
\qquad

Evaluation

- one abstraction has exactly one parameter
- abstraction + application = redex (reducible expression)
- non-reducible terms = values
- in pure λ-calculus: abstraction is only kind of data
\Rightarrow computations always return other abstractions (only possible value!)
- beta reduction: one step of redex evaluation

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{1}\right) \mathrm{t}_{2} \rightarrow\left[\mathrm{x} \mapsto \mathrm{t}_{2}\right] \mathrm{t}_{1}
$$

\Rightarrow function evaluation $=$ term substitution

- We use call-by-value evaluation:
evaluate terms left to right (depth-first),
if remaining term is redex, recursively continue evaluating
- Other evaluation strategies also possible

Naming of variables

What is wrong in the following evaluation?

$$
[\mathrm{x} \mapsto \mathrm{z}](\lambda \mathrm{z} \cdot \mathrm{x})=(\lambda \mathrm{z} \cdot[\mathrm{x} \mapsto \mathrm{z}] \mathrm{x})=(\lambda \mathrm{z} \cdot \mathrm{z})
$$

Naming of variables

What is wrong in the following evaluation?

$$
[x \mapsto z](\lambda z \cdot x)=(\lambda z \cdot[x \mapsto z] x)=(\lambda z \cdot z)
$$

We changed the meaning from a constant function to an identity function!

Two possible solutions:
Allow substitution only if bound variable in abstraction not free in
right-hand term of the substitution
2. Rename bound variable to unused name before applying such a substitution:

\Rightarrow called alpha-conversion, terms identical modulo names are α-equivalent

Naming of variables

What is wrong in the following evaluation?

$$
[x \mapsto z](\lambda z \cdot x)=(\lambda z \cdot[x \mapsto z] x)=(\lambda z \cdot z)
$$

We changed the meaning from a constant function to an identity function!
Two possible solutions:

1. Allow substitution only if bound variable in abstraction not free in right-hand term of the substitution
2. Rename bound variable to unused name before applying such a substitution: $[\mathrm{x} \mapsto \mathrm{z}](\lambda \mathrm{z} \cdot \mathrm{x})=[\mathrm{x} \mapsto \mathrm{z}](\lambda \mathrm{y} \cdot \mathrm{x})=(\lambda \mathrm{y} \cdot[\mathrm{x} \mapsto \mathrm{z}] \mathrm{x})=(\lambda \mathrm{y} \cdot \mathrm{z})$
called alpha-conversion, terms identical modulo names are α-equivalent

Naming of variables

What is wrong in the following evaluation?

$$
[x \mapsto z](\lambda z \cdot x)=(\lambda z \cdot[x \mapsto z] x)=(\lambda z \cdot z)
$$

We changed the meaning from a constant function to an identity function!
Two possible solutions:

1. Allow substitution only if bound variable in abstraction not free in right-hand term of the substitution
2. Rename bound variable to unused name before applying such a substitution: $[\mathrm{x} \mapsto \mathrm{z}](\lambda \mathrm{z} \cdot \mathrm{x})=[\mathrm{x} \mapsto \mathrm{z}](\lambda \mathrm{y} \cdot \mathrm{x})=(\lambda \mathrm{y} \cdot[\mathrm{x} \mapsto \mathrm{z}] \mathrm{x})=(\lambda \mathrm{y} \cdot \mathrm{z})$
\Rightarrow called alpha-conversion, terms identical modulo names are α-equivalent

Currying and partial application

$$
(\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{x} \mathrm{y}) \mathrm{ab} \rightarrow(\lambda \mathrm{y} \cdot \mathrm{a} \mathrm{y}) \mathrm{b} \rightarrow \mathrm{ab}
$$

- Nested abstractions 'simulate' functions with multiple arguments
- Technimue called currving named after Hackell Curry (but thought to go back to Moses Schönfinkel)

Currying and partial application

$$
(\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{x} \mathrm{y}) \mathrm{ab} \rightarrow(\lambda \mathrm{y} \cdot \mathrm{a} \mathrm{y}) \mathrm{b} \rightarrow \mathrm{ab}
$$

- Nested abstractions 'simulate' functions with multiple arguments
- Technique called currying, named after Haskell Curry
(but thought to go back to Moses Schönfinkel)
- Invorse action - annlying only some argumente to a curried function
before e.g. passing it somewhere else is called partial application

Currying and partial application

$$
(\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{x} \mathrm{y}) \mathrm{ab} \rightarrow(\lambda \mathrm{y} \cdot \mathrm{a} \mathrm{y}) \mathrm{b} \rightarrow \mathrm{ab}
$$

- Nested abstractions 'simulate’ functions with multiple arguments
- Technique called currying, named after Haskell Curry
(but thought to go back to Moses Schönfinkel)
- Inverse action - applying only some arguments to a curried function
before e.g. passing it somewhere else is called partial application
- Here: Succescive substitutions
= passing first and second argument one after the other

Currying and partial application

$$
(\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{xy}) \mathrm{ab} \rightarrow(\lambda \mathrm{y} \cdot \mathrm{a} \mathrm{y}) \mathrm{b} \rightarrow \mathrm{a} \mathrm{~b}
$$

- Nested abstractions ‘simulate’ functions with multiple arguments
- Technique called currying, named after Haskell Curry
(but thought to go back to Moses Schönfinkel)
- Inverse action - applying only some arguments to a curried function before e.g. passing it somewhere else is called partial application

Here: Successive substitutions $[\mathrm{x} \mapsto \mathrm{a}]$ and = passing "i si and second argument one after the other

Currying and partial application

$$
(\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{xy}) \mathrm{ab} \rightarrow(\lambda \mathrm{y} \cdot \mathrm{a} \mathrm{y}) \mathrm{b} \rightarrow \mathrm{a} \mathrm{~b}
$$

- Nested abstractions 'simulate’ functions with multiple arguments
- Technique called currying, named after Haskell Curry (but thought to go back to Moses Schönfinkel)
- Inverse action - applying only some arguments to a curried function before e.g. passing it somewhere else is called partial application
- Here: Successive substitutions $[\mathrm{x} \mapsto \mathrm{a}]$ and $[\mathrm{y} \mapsto \mathrm{b}]$
= passing first and second argument one after the other

Church booleans

Q: How can we calculate something meaningful, having only abstractions?
A: Find special abstractions we will treat as booleans \Rightarrow Church booleans

Church booleans

Q: How can we calculate something meaningful, having only abstractions?
A: Find special abstractions we will treat as booleans \Rightarrow Church booleans

$$
\begin{aligned}
& \mathrm{tru}=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{t} \\
& \mathrm{fls}=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{f}
\end{aligned}
$$

Church booleans

Q: How can we calculate something meaningful, having only abstractions?
A: Find special abstractions we will treat as booleans \Rightarrow Church booleans

$$
\begin{aligned}
& \text { not }=\lambda \mathrm{b} . \mathrm{b} \mathrm{fl} \mathrm{~s} \text { tru } \\
& t r u=\lambda t . \lambda f . t \\
& \mathrm{fls}=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{f}
\end{aligned}
$$

Church booleans

Q: How can we calculate something meaningful, having only abstractions?
A: Find special abstractions we will treat as booleans \Rightarrow Church booleans

$$
\begin{array}{ll}
\text { tru }=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{t} & \text { not }=\lambda \mathrm{b} . \mathrm{b} \mathrm{fls} \mathrm{tru} \\
\mathrm{fls}=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{f} & \text { and }=\lambda \mathrm{b} . \lambda \mathrm{c} . \mathrm{b} \text { c fls }
\end{array}
$$

Church booleans

Q: How can we calculate something meaningful, having only abstractions?
A: Find special abstractions we will treat as booleans \Rightarrow Church booleans

$$
\begin{array}{ll}
\mathrm{tru}=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{t} & \text { not }=\lambda \mathrm{b} . \mathrm{b} \text { fls tru } \\
\mathrm{fls}=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{f} & \text { and }=\lambda \mathrm{b} . \lambda \mathrm{c} . \mathrm{b} \mathrm{c} \mathrm{fls}
\end{array}
$$

Problem: test always evaluates both arguments (=if-branches)
Solution: M/ran the arguments in dummy abstrantions, unnack afterwards

Church booleans

Q: How can we calculate something meaningful, having only abstractions?
A: Find special abstractions we will treat as booleans \Rightarrow Church booleans

$$
\begin{array}{ll}
\mathrm{tru}=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{t} & \text { not }=\lambda \mathrm{b} . \mathrm{b} f \mathrm{l} \mathrm{~s} \text { tru } \\
\mathrm{fls}=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{f} & \text { and }=\lambda \mathrm{b} . \lambda \mathrm{c} . \mathrm{b} \mathrm{c} \mathrm{fls} \\
& \text { or }
\end{array}
$$

Problem: test always evaluates both arguments (=if-branches)
Solution: M/ran the arguments in dummy abstractions, unnack afterwards

Church booleans

Q: How can we calculate something meaningful, having only abstractions?
A: Find special abstractions we will treat as booleans \Rightarrow Church booleans

$$
\begin{array}{ll}
\text { tru }=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{t} & \text { not }=\lambda \mathrm{b} . \mathrm{b} f \mathrm{ls} \mathrm{tru} \\
\mathrm{fls}=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{f} & \text { and }=\lambda \mathrm{b} . \lambda \mathrm{c} . \mathrm{b} \mathrm{c} \mathrm{fls} \\
& \text { or }
\end{array}
$$

Problem: test always evaluates both arguments (= if-branches)
Solution: Wrap the arguments in dummy abstractions, unpack afterwards

Church numerals

There is also an encoding for natural numbers, called Church numerals:

$$
\begin{aligned}
& \mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} \\
& \mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} \\
& \mathrm{c}_{2}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s} \mathrm{z})
\end{aligned}
$$

Church numerals

There is also an encoding for natural numbers, called Church numerals:

$$
\begin{array}{ll}
\mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} & \mathrm{scc}=\lambda \mathrm{n} \cdot \lambda \mathrm{~s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{n} \mathrm{~s} \mathrm{z}) \\
\mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} & \mathrm{pius}=\lambda \mathrm{m} \cdot \lambda \mathrm{n} \cdot \lambda \mathrm{~s} \cdot \lambda \mathrm{z} \cdot \mathrm{~ms}(\mathrm{f} \\
\mathrm{c}_{2}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{sz}) & \text { times }=\lambda \mathrm{m} \cdot \lambda \mathrm{n} \cdot \mathrm{~m}(\mathrm{plus}) \mathrm{c}
\end{array}
$$

Church numerals

There is also an encoding for natural numbers, called Church numerals:

$$
\begin{aligned}
& \mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} \\
& \mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} \\
& \mathrm{c}_{2}=\lambda \mathrm{s} . \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s} \mathrm{z})
\end{aligned}
$$

$$
\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~ns} \mathrm{z})
$$

$$
\mathrm{plus}=\lambda \mathrm{m} . \lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{ms}(\mathrm{n} \mathrm{~s} \mathrm{z})
$$

Church numerals

There is also an encoding for natural numbers, called Church numerals:

$$
\begin{array}{lrl}
\mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} & \mathrm{scc}=\lambda \mathrm{n} \cdot \lambda \mathrm{~s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~ns} \mathrm{z}) \\
\mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} & \mathrm{plus}=\lambda \mathrm{m} \cdot \lambda \mathrm{n} \cdot \lambda \mathrm{~s} \cdot \lambda \mathrm{z} \cdot \mathrm{~ms}(\mathrm{n} \mathrm{~s} \mathrm{z}) \\
\mathrm{c}_{2}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s} \mathrm{z}) & \text { times }=\lambda \mathrm{m} \cdot \lambda \mathrm{n} \cdot \mathrm{~m}(\mathrm{plus} \mathrm{n}) \mathrm{c}_{0}
\end{array}
$$

- Subtraction also possible, but more tricky

Church numerals

There is also an encoding for natural numbers, called Church numerals:

$$
\begin{aligned}
& \mathrm{c}_{0}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{z} \\
& \mathrm{c}_{1}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s} \mathrm{z} \\
& \mathrm{c}_{2}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{~s} \mathrm{z}) \\
& \mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{~s} \mathrm{z}) \\
& \text { plus }=\lambda m . \lambda n . \lambda s . \lambda z . m s(n s z) \\
& \text { times }=\lambda m . \lambda \text { n. m (plus } n) c_{0} \\
& \text { iszro }=\lambda m . m(\lambda x . f l s) t r u
\end{aligned}
$$

- Subtraction also possible, but more tricky
- With subtraction we also get equality:

Church numerals

There is also an encoding for natural numbers, called Church numerals:

$$
\begin{aligned}
& c_{0}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{z} \\
& \mathrm{c}_{1}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s} \mathrm{z} \\
& \mathrm{c}_{2}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{sz}) \\
& \begin{aligned}
\mathrm{scc} & =\lambda \mathrm{n} . \lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{n} \mathrm{~s} \mathrm{z}) \\
\text { plus } & =\lambda \mathrm{m} . \lambda \mathrm{n} . \lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~ms}(\mathrm{n} \mathrm{~s} \mathrm{z}) \\
\text { times } & =\lambda \mathrm{m} . \lambda \mathrm{n} . \mathrm{m}(\mathrm{plus} \mathrm{n}) \mathrm{c}_{0} \\
\text { iszro } & =\lambda \mathrm{m} . \mathrm{m}(\lambda \mathrm{x} . \mathrm{fls}) \text { tru }
\end{aligned}
\end{aligned}
$$

- Subtraction also possible, but more tricky
- With subtraction we also get equality:

Church numerals

There is also an encoding for natural numbers, called Church numerals:

$$
\begin{array}{lr}
\mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} & \mathrm{scc}=\lambda \mathrm{n} \cdot \lambda \mathrm{~s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{n} \mathrm{~s} \mathrm{z}) \\
\mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} & \mathrm{plus}=\lambda \mathrm{m} . \lambda \mathrm{n} \cdot \lambda \mathrm{~s} \cdot \lambda \mathrm{z} \cdot \mathrm{~ms}(\mathrm{~ns} \mathrm{~s}) \\
\mathrm{c}_{2}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{sz}) & \text { times }=\lambda m . \lambda \mathrm{n} . \mathrm{m}(\mathrm{plus} \mathrm{n}) \mathrm{c}_{0} \\
\ldots & \text { iszro }=\lambda m . \mathrm{m}(\lambda \mathrm{x} . \mathrm{fls}) \text { tru }
\end{array}
$$

- Subtraction also possible, but more tricky
- With subtraction we also get equality:

$$
\begin{array}{r}
\mathrm{eq}=\lambda \mathrm{n} . \lambda \mathrm{m} \cdot \text { and }(\text { iszro }(\text { minus } \mathrm{n} m)) \\
(\text { iszro }(\text { minus } \mathrm{m} n))
\end{array}
$$

Adding real booleans and numbers

No real programming language uses Church encoded data \Rightarrow inefficient!
Easy to extend syntax to support primitive data types as atomic values:

- if-condition evaluated \Rightarrow replace if-expression by correct branch

\qquad

Adding real booleans and numbers

No real programming language uses Church encoded data \Rightarrow inefficient!
Easy to extend syntax to support primitive data types as atomic values:

- Booleans: add true, false, if t then t else t
- Numbers: add 0, succ, pred, iszero

Evaluation:

- if-condition evaluated \Rightarrow replace if-expression by correct branch

 B suce + pred form redex \Rightarrow when they meet, remove Easy to convert between Church-encoded and primitive values, e.g.
Adding real booleans and numbers

No real programming language uses Church encoded data \Rightarrow inefficient!
Easy to extend syntax to support primitive data types as atomic values:

- Booleans: add true,false, if then t else t
- Numbers: add 0, succ, pred, iszero

Evaluation:

- if-condition evaluated \Rightarrow replace if-expression by correct branch
- succ + pred form redex \Rightarrow when they meet, remove
- iszero 0 evaluates to true, otherwise false
\square

Adding real booleans and numbers

No real programming language uses Church encoded data \Rightarrow inefficient!
Easy to extend syntax to support primitive data types as atomic values:

- Booleans: add true, false, if t then t else t
- Numbers: add 0, succ, pred, iszero

Evaluation:

- if-condition evaluated \Rightarrow replace if-expression by correct branch
- succ + pred form redex \Rightarrow when they meet, remove
- iszero 0 evaluates to true, otherwise false

Easy to convert between Church-encoded and primitive values, e.g.:

$$
\begin{aligned}
\text { realbool } & =\lambda \mathrm{b} . \mathrm{b} \text { true false } \\
\text { churchbool } & =\lambda \mathrm{b} . \text { if } \mathrm{b} \text { then tru else fls }
\end{aligned}
$$

- there are many possible extensions to the pure calculus:
- more primitive types, lists, tuples, recursion (\rightarrow looping), \ldots
- either as part of formal definition or as syntactic sugar \Rightarrow convenient notation for constructions that are possible, but are verbose/ugly/hard to use with base definition
- sugar helps keeping the core language clean and simple
- we do not add more stuff, finally move on to types ...

Motivation

Q: What about input like if 0 then true else 0 or succ false?

A: Depending on the concrete expression and defined semantics:

> - evaluation gets stuck at undefined state (\rightarrow runtime-error)

worse: evaluation continues, producing garbage, possibiy undetected!

Motivation

Q: What about input like if 0 then true else 0 or succ false?
A: Depending on the concrete expression and defined semantics:

- evaluation gets stuck at undefined state (\rightarrow runtime-error)
- worse: evaluation continues, producing garbage, possibly undetected! We need a way to easily and automatically check input before actual cualuation and only accont woll tymed innut that is playing by the rulas

Motivation

Q: What about input like if 0 then true else 0 or succ false?
A: Depending on the concrete expression and defined semantics:

- evaluation gets stuck at undefined state (\rightarrow runtime-error)
- worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual
cvaluation and only accont woll tymed innut that is playing by the rulas

Motivation

Q: What about input like if 0 then true else 0 or succ false?
A: Depending on the concrete expression and defined semantics:

- evaluation gets stuck at undefined state (\rightarrow runtime-error)
- worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual evaluation and only accept well-typed input that is playing by the rules!

Solution:
\qquad

Motivation

Q: What about input like if 0 then true else 0 or succ false?
A: Depending on the concrete expression and defined semantics:

- evaluation gets stuck at undefined state (\rightarrow runtime-error)
- worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual evaluation and only accept well-typed input that is playing by the rules!

Solution:

- Assign each function a type of the form $T_{1} \rightarrow T_{2}$
- read: function taking value of type T_{1}, returning value of type T_{2}

Motivation

Q: What about input like if 0 then true else 0 or succ false?
A: Depending on the concrete expression and defined semantics:

- evaluation gets stuck at undefined state (\rightarrow runtime-error)
- worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual evaluation and only accept well-typed input that is playing by the rules!

Solution:

- Assign each function a type of the form $T_{1} \rightarrow T_{2}$
- read: function taking value of type T_{1}, returning value of type T_{2}
$\rightarrow \rightarrow$ type constructor, $T_{n}=$ type variable

Motivation

Q: What about input like if 0 then true else 0 or succ false?
A: Depending on the concrete expression and defined semantics:

- evaluation gets stuck at undefined state (\rightarrow runtime-error)
- worse: evaluation continues, producing garbage, possibly undetected!

We need a way to easily and automatically check input before actual evaluation and only accept well-typed input that is playing by the rules!

Solution:

- Assign each function a type of the form $T_{1} \rightarrow T_{2}$
- read: function taking value of type T_{1}, returning value of type T_{2}
- \rightarrow = type constructor, $T_{n}=$ type variable
- \rightarrow is right-associative: $A \rightarrow B \rightarrow C=A \rightarrow(B \rightarrow C)$

Syntax

Definition (Syntax of simply typed λ-calculus $(\lambda \rightarrow)$)

$t::=x$
$\lambda \mathrm{x}$: T. t
t
variable
abstraction
application

- Invented by Church in 1940
- Only superficial difference: every abstraction gets type annotation
- simply typed = only way to construct types is \rightarrow

We need some rules for correct type annotation. Some new notation first:

- Let Γ be a set of assumptions about types of terms, e. a free variables called tyning context - $\Gamma \vdash t: T$ means 'under given assumptions the term t has the type T' - Γ can be $\pi \rightarrow$ can be omitted in that case:

We need some rules for correct type annotation. Some new notation first:

- Let Γ be a set of assumptions about types of terms,
e.g. free variables, called typing context
$>\Gamma \vdash t:$ T means 'under given assumptions the term t has the type T' - Γ can be $\emptyset \Rightarrow$ can be omitted in that case: $\vdash t: T$ or $t: T$ \bar{B} is a deduction rule, means implication like $A \Rightarrow B$

We need some rules for correct type annotation. Some new notation first:

- Let Γ be a set of assumptions about types of terms,
e.g. free variables, called typing context
- $\Gamma \vdash \mathrm{t}: \mathrm{T}$ means 'under given assumptions the term t has the type T '
- Γ can be $\emptyset \Rightarrow$ can be omitted in that case: $\vdash t: T$ or $t: T$
- \bar{B} is a deduction rule, means implication like $A \Rightarrow B$

We need some rules for correct type annotation. Some new notation first:

- Let Γ be a set of assumptions about types of terms,
e.g. free variables, called typing context
- $\Gamma \vdash \mathrm{t}: \mathrm{T}$ means 'under given assumptions the term t has the type T '
- Γ can be $\emptyset \Rightarrow$ can be omitted in that case: $\vdash \mathrm{t}: \mathrm{T}$ or $\mathrm{t}: \mathrm{T}$
- $\frac{A}{B}$ is a deduction rule, means implication like $A \Rightarrow B$

Typing rules

Definition (Typing of variables (T-Var))

$$
\frac{\mathrm{x}: \mathrm{T} \in \Gamma}{\Gamma \vdash \mathrm{x}: \mathrm{T}}
$$

Typing rules

Definition (Typing of variables (T-Var))

$$
\frac{x: T \in \Gamma}{\Gamma \vdash x: T}
$$

Definition (Typing of abstractions (T-Abs))

$$
\frac{\Gamma, \mathrm{x}: \mathrm{T}_{1} \vdash \mathrm{t}_{2}: \mathrm{T}_{2}}{\Gamma \vdash \lambda \mathrm{x}: \mathrm{T}_{1} \cdot \mathrm{t}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}}
$$

Typing rules

Definition (Typing of variables (T-Var))

$$
\frac{x: T \in \Gamma}{\Gamma \vdash x: T}
$$

Definition (Typing of abstractions (T-Abs))

$$
\frac{\Gamma, \mathrm{x}: \mathrm{T}_{1} \vdash \mathrm{t}_{2}: \mathrm{T}_{2}}{\Gamma \vdash \lambda \mathrm{x}: \mathrm{T}_{1} \cdot \mathrm{t}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}}
$$

Definition (Typing of applications (T-App))

$$
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}}
$$

Typing rules for booleans and numbers

Definition (T-True, T-False, T-lf)

$$
\text { true: Bool false: Bool } \frac{\Gamma \vdash \mathrm{t}_{1}: \text { Bool } \Gamma \vdash \mathrm{t}_{2}: \mathrm{T} \quad \Gamma \vdash \mathrm{t}_{3}: \mathrm{T}}{\Gamma \vdash \text { if } \mathrm{t}_{1} \text { then } \mathrm{t}_{2} \mathrm{else} \mathrm{t}_{3}: \mathrm{T}}
$$

Note that t_{2} and t_{3} in the if-expression must have the same type T !

Typing rules for booleans and numbers

Definition (T-True, T-False, T-lf)

$$
\text { true: Bool false: Bool } \frac{\Gamma \vdash \mathrm{t}_{1}: \text { Bool } \Gamma \vdash \mathrm{t}_{2}: \mathrm{T} \quad \Gamma \vdash \mathrm{t}_{3}: \mathrm{T}}{\Gamma \vdash \text { if } \mathrm{t}_{1} \text { then } \mathrm{t}_{2} \mathrm{else} \mathrm{t}_{3}: \mathrm{T}}
$$

Note that t_{2} and t_{3} in the if-expression must have the same type T !

Definition (T-Zero, T-Succ, T-Pred, T-IsZero)

$$
\text { 0: Nat } \frac{\Gamma \vdash t_{1}: \text { Nat }}{\Gamma \vdash \text { succ }_{1}: \text { Nat }} \quad \frac{\Gamma \vdash t_{1}: \text { Nat }}{\Gamma \vdash \text { pred } t_{1}: \text { Nat }} \quad \frac{\Gamma \vdash t_{1}: \text { Nat }}{\Gamma \vdash \text { iszerot }_{1}: \text { Bool }}
$$

Deduction example

Let's prove

$\mathrm{f}:$ Bool \rightarrow Bool $\vdash \lambda \mathrm{x}:$ Bool.f(ifxthen false elsex): Bool \rightarrow Bool
Proof.

Deduction example

Let's prove

$\mathrm{f}:$ Bool \rightarrow Bool $\vdash \lambda \mathrm{x}:$ Bool.f(ifxthen false elsex): Bool \rightarrow Bool
Proof.

$$
\frac{\mathrm{x}: \text { Bool } \in \mathrm{x}: \text { Bool }}{\mathrm{x}: \text { Bool } \vdash \mathrm{x}: \text { Bool }} T-\operatorname{Var}
$$

Deduction example

Let's prove

$f:$ Bool \rightarrow Bool $\vdash \lambda x:$ Bool.f (ifxthen falseelsex) Bool \rightarrow Bool
Proof.

$$
\frac{\mathrm{x}: \text { Bool } \in \mathrm{x}: \text { Bool }}{\mathrm{x}: \text { Bool } \vdash \mathrm{x}: \text { Bool }} T-\operatorname{Var} \frac{}{\text { false: Bool }} T-\text { False }
$$

Deduction example

Let's prove

$f:$ Bool \rightarrow Bool $\vdash \lambda x:$ Bool.f (ifxthen falseelsex) Bool \rightarrow Bool
Proof.

$$
\frac{\frac{x: B o o l}{x: \text { Bool } \vdash x: B o o l}}{\frac{x: B o o l}{}+\text { Bar } \frac{\text { if } x \text { then false else } x: B o o l}{\text { false Bool }}} T-\text { False }
$$

Deduction example

Let's prove

$f:$ Bool \rightarrow Bool $\vdash \lambda x:$ Bool.f (if x then false else $x):$ Bool \rightarrow Bool
Proof.

$$
\frac{\mathrm{f}: \text { Bool } \rightarrow \text { Bool } \in \mathrm{f}: \text { Bool } \rightarrow \text { Bool }}{\mathrm{f}: \text { Bool } \rightarrow \text { Bool } \vdash \mathrm{f}: \text { Bool } \rightarrow \text { Bool }} \quad T-\operatorname{Var} \frac{\frac{\mathrm{x}: \text { Bool } \in \mathrm{x}: \text { Bool }}{\mathrm{x}: \text { Bool } \vdash \mathrm{x}: \text { Bool }} T-\operatorname{Var} \frac{\mathrm{false}: \text { Bool }}{} T-\text { False }}{\mathrm{x}: \text { Bool } \vdash \mathrm{ifx} \mathrm{x} \text { then false else } \mathrm{x}: \text { Bool }} T-\text { If }
$$

Deduction example

Let's prove

$f:$ Bool \rightarrow Bool $\vdash \lambda x:$ Bool.f (ifxthen falseelsex) Bool \rightarrow Bool
Proof.

Deduction example

Let's prove

$f: B o o l \rightarrow$ Bool $\vdash \lambda x:$ Bool.f (ifxthen false else $x):$ Bool \rightarrow Bool
Proof.

Properties of typing

Two important theorems can be shown for λ^{\rightarrow} by structural induction:

Properties of typing

Two important theorems can be shown for λ^{\rightarrow} by structural induction:

Theorem (Progress)

Suppose t is a closed, well-typed term (that is, $\vdash \mathrm{t}: \mathrm{T}$ for some T). Then either t is a value or else there is some t^{\prime} with $t \rightarrow t^{\prime}$.

Properties of typing

Two important theorems can be shown for λ^{\rightarrow} by structural induction:

Theorem (Progress)

Suppose t is a closed, well-typed term (that is, $\vdash \mathrm{t}: \mathrm{T}$ for some T). Then either t is a value or else there is some t^{\prime} with $t \rightarrow t^{\prime}$.

Theorem (Preservation)

If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \rightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.

Properties of typing

What does it mean?

- Progress:

Every well-typed term can be reduced to a value

- Preservation:

Every well-typed term evaluates to a well-typed term with the same type

- progress+preservation=type safety
\Rightarrow well-typed terms never get stuck during evaluation!

Properties of typing

- Another property that can be shown:
type erasure does not influence evaluation \Rightarrow Types can be (and are often!) removed during compilation, if everything is ok
- Reverse action - type reconstruction:
finding a possible type of a term with incomplete type annotations
- if the reconstruction mossible, the term is typable, if not: either invalid term or insufficient information

Properties of typing

- Another property that can be shown: type erasure does not influence evaluation \Rightarrow Types can be (and are often!) removed during compilation, if everything is ok
- Reverse action - type reconstruction: finding a possible type of a term with incomplete type annotations
- if the reconstruction possible, the term is typable, if not: either invalid term or insufficient information

doubleNat $=\lambda f:$ Nat \rightarrow Nat. $\lambda \mathrm{x}:$ Nat. $\mathrm{f}(\mathrm{f} \mathrm{x})$

doubleAll =

doubleNat $=\lambda f:$ Nat \rightarrow Nat. $\lambda \mathrm{x}:$ Nat. $\mathrm{f}(\mathrm{f} x)$ doubleBool $=\lambda f:$ Bool \rightarrow Bool. $\lambda \mathrm{x}:$ Bool. $\mathrm{f}(\mathrm{f} x)$

$$
\begin{aligned}
\text { doubleNat } & =\lambda \mathrm{f}: \text { Nat } \rightarrow \text { Nat. } \lambda \mathrm{x}: \text { Nat. } \mathrm{f}(\mathrm{fx}) \\
\text { doubleBool } & =\lambda \mathrm{f}: \text { Bool } \rightarrow \text { Bool. } \lambda \mathrm{x}: \text { Bool. } \mathrm{f}(\mathrm{fx}) \\
\text { doubleAll } & =?
\end{aligned}
$$

Problem:

For each type we need to duplicate identical code with other type annotations!

```
    doubleNat = \lambdaf:Nat }->\mathrm{ Nat. \x:Nat. f (f x)
doubleBool = \lambdaf:Bool }->\mathrm{ Bool. \x:Bool.f (fx)
    doubleAll = ?
```


Problem:

For each type we need to duplicate identical code with other type annotations!
We want something like Java Generics / C++ Templates
\Rightarrow we need to extend λ^{\rightarrow} with parametric polymorphism

$$
\begin{aligned}
\text { doubleNat } & =\lambda \mathrm{f}: \text { Nat } \rightarrow \text { Nat. } \lambda \mathrm{x}: \text { Nat. } \mathrm{f}(\mathrm{f} \mathrm{x}) \\
\text { doubleBool } & =\lambda \mathrm{f}: \text { Bool } \rightarrow \text { Bool. } \lambda \mathrm{x}: \text { Bool. } \mathrm{f}(\mathrm{fx}) \\
\text { doubleAll } & =?
\end{aligned}
$$

Problem:

For each type we need to duplicate identical code with other type annotations!
We want something like Java Generics / C++ Templates
\Rightarrow we need to extend $\lambda \rightarrow$ with parametric polymorphism
\rightsquigarrow System F (Girard, 1972)

System F

Definition (Syntax of System F)

$$
\begin{array}{cr}
\mathrm{t}::=\mathrm{x} & \text { variable } \\
& \lambda \mathrm{x}: \mathrm{T} . \mathrm{t} \\
\mathrm{t} & \text { abstraction } \\
& \lambda \mathrm{X} . \mathrm{t} \\
\mathrm{t}[\mathrm{~T}] & \text { application } \\
\text { type abstraction }
\end{array}
$$

uppercase letters = type variables, lowercase letters = terms

System F

- type abstraction/application works similar to normal, but we substitute type variables: $\left(\lambda \mathrm{X} . \mathrm{t}_{12}\right)\left[\mathrm{T}_{2}\right] \rightarrow\left[\mathrm{X} \mapsto \mathrm{T}_{2}\right] \mathrm{t}_{12}$
* before annotated types had to be concrete, now they are abstracted \Rightarrow we need new types and typing rules to express this - iype absiracitions get a universal type of the 'orm 'Vx.T now we have two different type constructors: \rightarrow and \forall \rightarrow socond-ardor lambda calculus

System F

- type abstraction/application works similar to normal, but we substitute type variables: $\left(\lambda \mathrm{X} . \mathrm{t}_{12}\right)\left[\mathrm{T}_{2}\right] \rightarrow\left[\mathrm{X} \mapsto \mathrm{T}_{2}\right] \mathrm{t}_{12}$
- before annotated types had to be concrete, now they are abstracted \Rightarrow we need new types and typing rules to express this type abstractions get a universal type of the form $\forall \mathrm{X} . \mathrm{T}$ - now we have two different type constructors: \rightarrow and \forall \Rightarrow second-order 'ambda caloulus

System F

- type abstraction/application works similar to normal, but we substitute type variables: $\left(\lambda \mathrm{X} . \mathrm{t}_{12}\right)\left[\mathrm{T}_{2}\right] \rightarrow\left[\mathrm{X} \mapsto \mathrm{T}_{2}\right] \mathrm{t}_{12}$
- before annotated types had to be concrete, now they are abstracted
\Rightarrow we need new types and typing rules to express this
- type abstractions get a universal type of the form $\forall \mathrm{X}$.T
- now we have two different type constructors: \rightarrow and \forall
\Rightarrow second-order lambda calculus

Rules for universal types

Definition (Typing of type abstractions (T-TAbs))

$$
\frac{\Gamma, x \vdash t_{2}: T_{2}}{\Gamma \vdash \lambda x \cdot \mathrm{t}_{2}: \forall \mathrm{x} \cdot \mathrm{~T}_{2}}
$$

Rules for universal types

Definition (Typing of type abstractions (T-TAbs))

$$
\frac{\Gamma, \mathrm{X} \vdash \mathrm{t}_{2}: \mathrm{T}_{2}}{\Gamma \vdash \lambda \mathrm{X} . \mathrm{t}_{2}: \forall \mathrm{X} . \mathrm{T}_{2}}
$$

Definition (Typing of type applications (T-TApp))

$$
\frac{\Gamma \vdash \mathrm{t}_{1}: \forall \mathrm{X} \cdot \mathrm{~T}_{12}}{\Gamma \vdash \mathrm{t}_{1}\left[\mathrm{~T}_{2}\right]:\left[\mathrm{X} \mapsto \mathrm{~T}_{2}\right] \mathrm{T}_{12}}
$$

Examples

$$
i d=\lambda x . \lambda x: x . x
$$

$$
\text { type } \forall X . X \rightarrow X
$$

Examples

$$
\begin{aligned}
i d & =\lambda \mathrm{X} . \lambda \mathrm{x}: \mathrm{X} . \mathrm{x} \\
\text { idNat } & =\mathrm{id}[\mathrm{Nat}]=\lambda \mathrm{x}: \mathrm{Nat} . \mathrm{x}
\end{aligned}
$$

type $\forall X . X \rightarrow X$
type Nat \rightarrow Nat

Examples

$$
\begin{array}{rlrl}
\text { id } & =\lambda \mathrm{X} . \lambda \mathrm{x}: \mathrm{X} . \mathrm{x} & \text { type } \forall \mathrm{X} . \mathrm{X} \rightarrow \mathrm{X} \\
\text { idNat } & =\text { id }[\text { Nat }]=\lambda \mathrm{x}: \text { Nat. } \mathrm{x} & & \text { type Nat } \rightarrow \text { Nat }
\end{array}
$$

$$
\begin{aligned}
\text { double }= & \lambda X . \lambda f: X \rightarrow X . \lambda x: X . f(f x) \\
& \text { type } \forall X .(X \rightarrow X) \rightarrow X \rightarrow X
\end{aligned}
$$

$\mathrm{dblBool}=$ double [Bool]

Examples

$$
\begin{array}{rlrl}
\text { id } & =\lambda \mathrm{X} . \lambda \mathrm{x}: \mathrm{X} . \mathrm{x} & \text { type } \forall \mathrm{X} . \mathrm{X} \rightarrow \mathrm{X} \\
\text { idNat } & =\text { id }[\text { Nat }]=\lambda \mathrm{x}: \text { Nat. } \mathrm{x} & & \text { type Nat } \rightarrow \text { Nat }
\end{array}
$$

$$
\begin{aligned}
\text { double }= & \lambda \mathrm{X} . \lambda \mathrm{f}: \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{x}: \mathrm{X} . \mathrm{f}(\mathrm{fx}) \\
& \text { type } \forall \mathrm{X} .(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow \mathrm{X} \rightarrow \mathrm{X} \\
\text { dblBool }= & \text { double }[\mathrm{Bool}] \\
= & \lambda \mathrm{f}: \text { Bool } \rightarrow \text { Bool. } \lambda \mathrm{x}: \text { Bool. } \mathrm{f}(\mathrm{fx}) \\
& \text { type }(\text { Bool } \rightarrow \text { Bool }) \rightarrow \text { Bool } \rightarrow \text { Bool }
\end{aligned}
$$

Examples

$$
\text { quad }=\lambda \mathrm{x} \text {. double }[\mathrm{X} \rightarrow \mathrm{X}](\text { double }[\mathrm{X}]) \quad \text { type } \forall \mathrm{X} .(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow \mathrm{X} \rightarrow \mathrm{X}
$$

Examples

quad $=\lambda \mathrm{X}$. double $[\mathrm{X} \rightarrow \mathrm{X}]$ (double $[\mathrm{X}]$) type $\forall \mathrm{X} .(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow \mathrm{X} \rightarrow \mathrm{X}$
Wait, what?!

Examples

$$
\text { quad }=\lambda \mathrm{X} \text {. double }[\mathrm{X} \rightarrow \mathrm{x}] \text { (double }[\mathrm{X}]) \quad \text { type } \forall \mathrm{X} .(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow \mathrm{X} \rightarrow \mathrm{X}
$$

Wait, what?! Yes, it is correct. Let's evaluate it:

$$
\text { quad }=\lambda \mathrm{x} \text {. double }[\mathrm{x} \rightarrow \mathrm{x}] \text { (double }[\mathrm{x}] \text {) }
$$

Examples

$$
\text { quad }=\lambda \mathrm{X} \text {. double }[\mathrm{X} \rightarrow \mathrm{X}](\text { double }[\mathrm{X}]) \quad \text { type } \forall \mathrm{X} .(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow \mathrm{X} \rightarrow \mathrm{X}
$$

Wait, what?! Yes, it is correct. Let's evaluate it:

$$
\begin{aligned}
\text { quad } & =\lambda \mathrm{X} . \text { double }[\mathrm{X} \rightarrow \mathrm{X}](\text { double }[\mathrm{X}]) \\
& =\lambda \mathrm{X} .(\lambda \mathrm{f}:(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \mathrm{f}(\mathrm{f} a))(\text { double }[\mathrm{X}])
\end{aligned}
$$

Examples

$$
\text { quad }=\lambda \mathrm{X} \text {. double }[\mathrm{X} \rightarrow \mathrm{X}](\text { double }[\mathrm{X}]) \quad \text { type } \forall \mathrm{X} .(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow \mathrm{X} \rightarrow \mathrm{X}
$$

Wait, what?! Yes, it is correct. Let's evaluate it:

$$
\begin{aligned}
\text { quad } & =\lambda \mathrm{X} . \text { double }[\mathrm{X} \rightarrow \mathrm{X}](\text { double }[\mathrm{X}]) \\
& =\lambda \mathrm{X} .(\lambda \mathrm{f}:(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \mathrm{f}(\mathrm{f} a))(\text { double }[\mathrm{X}]) \\
& =\lambda \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \text { double }[\mathrm{X}](\text { double }[\mathrm{X}] \mathrm{a})
\end{aligned}
$$

Examples

$$
\text { quad }=\lambda X \text {. double }[X \rightarrow X] \text { (double }[X]) \quad \text { type } \forall X .(X \rightarrow X) \rightarrow X \rightarrow X
$$

Wait, what?! Yes, it is correct. Let's evaluate it:

$$
\begin{aligned}
\text { quad } & =\lambda \mathrm{X} . \text { double }[\mathrm{X} \rightarrow \mathrm{X}](\text { double }[\mathrm{X}]) \\
& =\lambda \mathrm{X} .(\lambda \mathrm{f}:(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \mathrm{f}(\mathrm{f} a))(\text { double }[\mathrm{X}]) \\
& =\lambda \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \text { double }[\mathrm{X}](\text { double }[\mathrm{X}] \mathrm{a}) \\
& =\lambda \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} .(\lambda \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{b}: \mathrm{X} . \mathrm{g}(\mathrm{~g} b))(\text { double }[\mathrm{X}] \mathrm{a})
\end{aligned}
$$

Examples

$$
\text { quad }=\lambda X \text {. double }[X \rightarrow X] \text { (double }[X]) \quad \text { type } \forall X .(X \rightarrow X) \rightarrow X \rightarrow X
$$

Wait, what?! Yes, it is correct. Let's evaluate it:

$$
\begin{aligned}
\text { quad } & =\lambda \mathrm{X} . \text { double }[\mathrm{X} \rightarrow \mathrm{X}](\text { double }[\mathrm{X}]) \\
& =\lambda \mathrm{X} .(\lambda \mathrm{f}:(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \mathrm{f}(\mathrm{f} a))(\text { double }[\mathrm{X}]) \\
& =\lambda \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \text { double }[\mathrm{X}](\text { double }[\mathrm{X}] \mathrm{a}) \\
& =\lambda \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} .(\lambda \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{b}: \mathrm{X} \cdot \mathrm{~g}(\mathrm{~g} \cdot \mathrm{~b}))(\text { double }[\mathrm{X}] \mathrm{a}) \\
& =\lambda \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{b}: \mathrm{X} . \text { double }[\mathrm{X}] \mathrm{a}(\text { double }[\mathrm{X}] \mathrm{a} \mathrm{~b})
\end{aligned}
$$

Examples

$$
\text { quad }=\lambda X \text {. double }[X \rightarrow X] \text { (double }[X]) \quad \text { type } \forall X .(X \rightarrow X) \rightarrow X \rightarrow X
$$

Wait, what?! Yes, it is correct. Let's evaluate it:

$$
\begin{aligned}
\text { quad } & =\lambda \mathrm{X} . \text { double }[\mathrm{X} \rightarrow \mathrm{X}](\text { double }[\mathrm{X}]) \\
& =\lambda \mathrm{X} .(\lambda \mathrm{f}:(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \mathrm{f}(\mathrm{f} a))(\text { double }[\mathrm{X}]) \\
& =\lambda \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \text { double }[\mathrm{X}](\text { double }[\mathrm{X}] \mathrm{a}) \\
& =\lambda \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} .(\lambda \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{b}: \mathrm{X} . \mathrm{g}(\mathrm{~g} b))(\text { double }[\mathrm{X}] \mathrm{a}) \\
& =\lambda \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{b}: \mathrm{X} . \text { double }[\mathrm{X}] \mathrm{a}(\text { double }[\mathrm{X}] \mathrm{a} b) \\
& =\lambda \mathrm{X} . \lambda \mathrm{a}: \mathrm{X} \rightarrow \mathrm{X} . \lambda \mathrm{b}: \mathrm{X} . \mathrm{a}(\mathrm{a}(\mathrm{a}(\mathrm{a} \cdot \mathrm{~b})))
\end{aligned}
$$

System F

- As you see, parametric polymorphism is very expressive
- Haskell programs desugar to an ext. System F form during compilation
- preservation and progress theorems still hold in System F \Rightarrow type-safe type reconstruction undecidable \Rightarrow not all annotations can be omitted Languages based on System F have artilicial restrictions on valid terms to keep partial reconstruction possible

System F

- As you see, parametric polymorphism is very expressive
- Haskell programs desugar to an ext. System F form during compilation
- preservation and progress theorems still hold in System F \Rightarrow type-safe
- type reconstruction undecidable \Rightarrow not all annotations can be omitted
- Languages based on System F have artificial restrictions on valid terms to keep partial reconstruction possible

Type theory and OOP

- Important branch: λ-calculi with subtyping (Reynolds, Cardelli (1980's))
- Theoretical foundation of inheritance in OOP

> Extension: Subtyping relation with new set of deduction rules - Says which types can be treated as more general types \Rightarrow Functions can ignore specialisation and work on more inputs \rightarrow Efforts to prove type safety of Java (first by Drossopoulou, Eisenbach and Khurshid (1999)) \Rightarrow using calculi with subtyping which resemble Java subsets

Type theory and OOP

- Important branch: λ-calculi with subtyping (Reynolds, Cardelli (1980's))
- Theoretical foundation of inheritance in OOP
- Extension: Subtyping relation with new set of deduction rules
- Says which types can be treated as more general types
\Rightarrow Functions can ignore specialisation and work on more inputs
- Efforts to prove type safety of Java (first by Drossopoulou, Eisenbach and Khurshid (1999)) \Rightarrow usina calculi with subtyping which resemble Java subsets

Type theory and OOP

- Important branch: λ-calculi with subtyping (Reynolds, Cardelli (1980's))
- Theoretical foundation of inheritance in OOP
- Extension: Subtyping relation with new set of deduction rules
- Says which types can be treated as more general types
\Rightarrow Functions can ignore specialisation and work on more inputs
- Efforts to prove type safety of Java (first by Drossopoulou, Eisenbach and Khurshid (1999))
\Rightarrow using calculi with subtyping which resemble Java subsets

Type theory and logic

- Curry-Howard-Correspondence: (Curry (1958), Howard (1980)) isomorphism: types \approx propositions, terms \approx proofs!
\Rightarrow Connection between constructive logic and computer science
\square
- E.g. used for tools like Coq-interactive theorem prover - Helps the user formulating assertions and finding proofs - proof-checkina = tvpe-checkina the proaram! - Such tools often based on calculi with dependent types \Rightarrow types like Array $\mathrm{n} \rightarrow$ Array $(\mathrm{n}+1)$ possible

Type theory and logic

- Curry-Howard-Correspondence: (Curry (1958), Howard (1980)) isomorphism: types \approx propositions, terms \approx proofs!
\Rightarrow Connection between constructive logic and computer science
- E.g. used for tools like Coq-interactive theorem prover
- Helps the user formulating assertions and finding proofs
- proof-checking = type-checking the program!
- Such tools often based on calculi with dependent types

Type theory and logic

- Curry-Howard-Correspondence: (Curry (1958), Howard (1980)) isomorphism: types \approx propositions, terms \approx proofs!
\Rightarrow Connection between constructive logic and computer science
- E.g. used for tools like Coq-interactive theorem prover
- Helps the user formulating assertions and finding proofs
- proof-checking = type-checking the program!
- Such tools often based on calculi with dependent types
\Rightarrow types like Array $\mathrm{n} \rightarrow$ Array $(\mathrm{n}+1$) possible

Conclusion

Q: What do we get using type systems in the context of software verification?

- our program will compile and execute (catch syntax errors)
our functions will take and return the intended data types
(catch wiolations of out mentar modelahe designed amis

Conclusion

Q: What do we get using type systems in the context of software verification?
A:

- our program will compile and execute (catch syntax errors)
our functions will take and return the intended data types
(catch violations of out mentar model/the designed ami)
we can control which functions can do which effects,
provent specific walues to he taken out of contewt
(e.g. the Monad typeclass in Haskell)

Conclusion

Q: What do we get using type systems in the context of software verification?
A:

- our program will compile and execute (catch syntax errors)
- our functions will take and return the intended data types (catch violations of our mental model/the designed API)
we can control which functions can do which effects, prevent spectic values to be taken out of context (e.g. the Monad typeclass in Haskell) With dependent types: prove almost arbitrary properties, e.g. Check for array-out-of-bound errors on compite time or even prove that a sorting algorithm sorts correctly

Conclusion

Q: What do we get using type systems in the context of software verification?
A:

- our program will compile and execute (catch syntax errors)
- our functions will take and return the intended data types (catch violations of our mental model/the designed API)
- we can control which functions can do which effects, prevent specific values to be taken out of context (e.g. the Monad typeclass in Haskell)
- With dependent types: prove almost arbitrary properties e.g. oheck for ambay-out-ofthound errors on complte time or even prove that a sorting algorithm sorts correctly

Conclusion

Q: What do we get using type systems in the context of software verification?
A:

- our program will compile and execute (catch syntax errors)
- our functions will take and return the intended data types (catch violations of our mental model/the designed API)
- we can control which functions can do which effects, prevent specific values to be taken out of context (e.g. the Monad typeclass in Haskell)
- With dependent types: prove almost arbitrary properties, e.g. check for array-out-of-bound errors on compile time or even prove that a sorting algorithm sorts correctly

Conclusion

- more powerful type systems require more work by the developer
- a clear model of the types in an application is necessery
- types are also a form of formal specification as usual, it is balance between more safety and more additional work - -calculi are an important model to prove propertios and dovelop nom algorithms and abstractions
- results can be and are transferred to real-world programming languages \Rightarrow developers profit from better, safer and more expressive tools :)

Conclusion

- more powerful type systems require more work by the developer
- a clear model of the types in an application is necessery
- types are also a form of formal specification as usual, it is balance between more safety and more additional work
λ-calculi are an important model to prove properties and develop new algorithms and abstractions
results can be and are transferred to real-world programming languages * dew-loners profit from batter, safor and more expressive tools .t

Conclusion

- more powerful type systems require more work by the developer
- a clear model of the types in an application is necessery
- types are also a form of formal specification as usual, it is balance between more safety and more additional work
- λ-calculi are an important model to prove properties and develop new algorithms and abstractions
- results can be and are transferred to real-world programming languages \Rightarrow developers profit from better, safer and more expressive tools :)

Benjamin C. Pierce. Types and Programming Languages, MIT Press, 2002

- A. Church, An unsolvable problem of elementary number theory, American Journal of Mathematics, Volume 58, No. 2. (April 1936), pp. 345-363.
- A. Church, A Formulation of the Simple Theory of Types, Journal of Symbolic Logic, Volume 5 (1940).
A. M. Turing, Computability and λ-Definability, The Journal of Symbolic Logic, Vol. 2, No. 4. (Dec., 1937), pp. 153-163.
R. Curry, R. Feys Combinatory Logic Vol. I, Amsterdam, North-Holland (1958)W. A. Howard The formulae-as-types notion of construction in Essays on Combinatory Logic, Lambda Calculus and Formalism, Boston, MA (Sep. 1980), pp. 479-490

Rohn C. Reynolds Definitional Interpreters for Higher-Order Programming Languages, Higher-Order and Symbolic Computation 11 (1998)

- J. Girard Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur, Université Paris (1974)
囯 John C. Reynolds Using category theory to design implicit conversions and generic operators, Lecture Notes in Computer Science vol. 94, Springer-Verlag (1980)
L. Cardelli A semantics of multiple inheritance, Lecture Notes in Computer Science vol. 173, pp. 51-67, Springer-Verlag (1984)
图 S. Drossopoulou, S. Eisenbach, S. Khurshid Is the Java Type System Sound?, Theory and Practice of Object Systems (1999)

